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Summary

For a long time, we were not sure if we should
present Genetic Al to a broader audience. In the
end, we decided that the gains of other teams
pushing the technology forward far outweigh the
risk of losing control over it.

A warning upfront: Genetic Al is complex. We have
taken the freedom to describe the foundations and
framework in detail - keep on reading, it is worth it!

We have taken our inspiration from genetic algorithms and
evolutionary game theory, but then proceeded in a new di-
rection: with an evolutionary approach, can we reach a new
understanding of the nature of universal data?

To that end, Genetic Al employs the concept of genes and
organisms interacting with each other. The interplay be-
tween genes (data features) and organisms (data sets)
stands in the center of the technology. By controlling the
resulting dynamics with specific evolutionary strategies, we
manage to create a versatile framework for applications in
data analysis and Al.

What makes Genetic Al unique as a technology in artificial
intelligence? Employing very fast evolutionary simulations
allows us to train Al models in real-time for the first time.
This, together with the possibility to decentralize the training
process, opens up new fields of technical opportunities for
the taking.

Genetic Al - applying evolutionary strategies
to create a new type of artificial intelligence
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Introduction

or how should a new artificial intelligence technology look like?

Before we dive into the realms of Genetic Al, let us
first take a step back and reflect about what kind
of Al the world “needs”. The past decade have been
driven by technological innovations in Al, but
somehow people only thought about what is good
or bad about it after it was developed or released.

With recent innovations in Large Language Models (LLM)
we again missed the chance to actively state what kind of
Al has a positive impact on our lives and society as a whole.
Before Genetic Al becomes a “polished” technology, let us
not redo this mistake and define must-have points

Stability?: stabilizing unstable Al solutions is currently done
using colossal data and energy resources. We have to find a
simpler way to obtain a stable answer from an Al.

Decentral Data and Model: central control of data and Al
model creates distrust among users. A decentralized ap-
proach has multiple advantages in terms of societal value.
It is clear that not all applications allow for complete decen-
tralization - still, we have to move as close as possible.

At first glimpse it seems unrealistic

or even impossible to fulfill all these
requirements in one single technology.
As we will see, it is not only indeed
possible, but Genetic Al also opens up
new ways to follow-up technologies.
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Follow-the-rules®: Al has to follow given rules of law and
ethics. There can be no question about it.

Transparent: The black-box behavior of many Al solutions
makes it difficult to trust the results. Hidden agendas dom-
inate corporate Al and it is difficult to see through the inter-
nal processes. Hence, Al has to transparently explain what it
does and why.

Non-conformist: Many wide-spread Al technologies have
the tendency to overrate average behavior as “good”. This
leads to streamlining in markets and opinions, where we
would actually need diverse solutions for the world’s problems.

Low Resources: The current energy demand of Al solutions
stands in no relation to the created value. We need Al tech-
nology that uses as little resources as possible.

In order to approach the technical
details of Genetic Al, we first have to
introduce three important prerequisites:
multi-dimensional sorting,

genetic algorithms and evolutionary
game theory.

2 What we define as stability is also often called “robustness”, especially in the sense
of “Trustworthy Al”. We mean by “stability” in particular two properties (i) the
result of the Al does not change by small changes in data and model properties,
and (ii) the result makes sense, or at least one understands why the Al fails (no
unexplained, surprising “hallucination”).

3 This unifies the other two properties of “Trustworthy Al” apart from robustness:
lawfulness and ethical behavior.
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An introduction to multi-dimensional sorting

Sorting things is tedious business. Everybody who
has sorted cards or other comparable items knows:
it involves a lot of pairwise comparisons. Hence, it
does not come as a surprise that sorting was one
of the first things computers were much faster than
humans some 70 years ago.

When we think of sorting, we usually think of one-dimensional
sorting, i.e. the sorting of things according to one single
parameter. Getting the cheapest flight from A to B requires
sorting the prices from lowest to highest. Naturally, there is
only one correct sorting order?.

What happens if we want to sort according to multiple pa-
rameters? Imagine you do not want the cheapest flight, but
also minimal flight-time and intermediate stops (see also
Getting the right flight). In contrast to one-dimensional sort-
ing, multi-dimensional sorting (MDS) allows for multiple
“right” solutions. In the end it depends on the situation and
application what we would consider the correct result. In
more complex systems defining a single, universally correct
solution usually does not make sense at all.

Getting the right flight

As a simple example, let us define a very small multi-dimen-
sional sorting problem - namely finding the right flight out
of 3 options with 3 parameters each (note that we left out
reasons of sustainability for brevity here):

Price Time-of-

(Euro) transfer (h) | Stops
Flight A 300 10
Flight B 600 5
Flight C 1500 4 1
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In algorithms as in life, everything comes at a price. Mathe-
matically speaking, there is “no free lunch” when it comes
to which algorithms is good for which applications®. In this
sense, it is a big advantage for MDS algorithms that they do
not care about the “space” between their ordered items (i.e.
how far A is before B is not important, only the order counts).
Consequently, MDS algorithms can “focus” their complexity
on getting the order right, while other algorithms may be
distracted, calculating exact values of probabilities. In terms
of the NFL theorem, MDS algorithms are therefore the best
choice for MDS problems.

One might now argue that MDS problems are rare. Ironically,
exactly the opposite is true: almost all problems containing
any decision are MDS problems. Where do humans or ma-
chines have something to decide? Apart from consumer
needs (which essentially dominate our everyday life), we also
find decisions everywhere else: e.g. politics, economics and
automation. Hence, MDS problems actually dominate anal-
ysis and prediction for structured data - let us now find a
universal way to solve them.

So: which offer is best? That depends on your budget and
available time. Thus, any MDS algorithm has to take into
account specific preferences to calculate a possible solution.
Note that it might be unclear what a “right” solution is, but
it is usually pretty clear what a false solution is (e.g. recom-
mending a budget-driven person the most expensive flight).

4 That is why the different one-dimensional sorting algorithms are mainly benchmar-
ked according to their performance. See [1] for a short introduction to the different
sorting algorithms.

5 Compare also [2] for a general introduction into the “no free lunch” (NFL) theorem.
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An introduction to
genetic and evolutionary
algorithms

Evolution is a serious but wonderful business [3]. Though
the image that evolution directly converges to a clear “win-
ning” organism is not valid, the idea that evolution poses a
natural optimization for life forms, adapting to their habitat
is in a sense universal. One might think: why not apply the
philosophy of evolutionary processes to general optimiza-
tion problems? Enter evolutionary algorithms (EA).

Live forms have reached every tiny corner of our planet.
Consequently, EAs are on the one hand very versatile®. On
the other hand, similar to the highly specialized species of a
habitat, EAs tend to be rather specialized to a particular
optimization problem. We now want to turn our attention to
a special form of EA: genetic algorithms (GA).

Similar to EAs, genetic algorithms leverage the power of evo-
lutionary contest to iteratively improve possible solutions to
a problem’. One of the first steps in this process is the refor-
mulation of the problem into genetic form. To that end, a
possible solution is encoded into a chain of numbers. Creating
and supervising a genetic model is often not straightforward
- still in many optimization problems it provides an elegant
way to close-in on the optimal solution.

Differences of sorting
algorithms to optimization
algorithms

In terms of algorithm taxonomy, sorting and optimiza-
tion are quite different. In optimization, you usually
start with an initial solution of low quality and want to
iteratively improve the solution. Usually you change
the solution over time aiming to create a better quality.
How quickly one obtains better solutions and how
good the final result is depends on the choice of opti-
mization algorithm and the problem you like to solve.
On the contrary, sorting algorithms have a fixed set of
solutions and want to quickly bring them into the
“right” order. Hence, no new solutions are created in
the process. Analyzing given solutions (by sorting) is
neither better nor worse than generating new ones (by
optimization) - it is simply a completely different prob-
lem to be solved.

So, what is the point? An important take-home mes-
sage is that one has to take care to select the right
type of algorithm for the right kind of problem: op-
timization algorithms are not good in sorting, while
sorting algorithms are not good in optimization.®

4]

Genetic recombination and the Fithess Function

One of the most eponymous steps in GAs is how new solu-
tions are created. Essentially, one mixes (“cross-over”) and/
or manipulates (“mutates”) parts of one solution with another.
These parts or units cannot be chosen at random, since not
any “bred” solution would be valid. Hence, these parts can
be interpreted as genes in genetic optimization.

To measure the quality of a solution s, genetic algorithms
employ a so-called fitness function F(s). The fitness F(s) can
be used to compare solutions amongst each other and sort
them. It is important to mention that the fitness function F(s)
is global for a system and usually stays the same for the entire
optimization. Note also that computing F(s) of all solutions
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of a generation can take some time, depending on the com-
plexity of the system.

In our route to Genetic Al, GAs pose an important milestone:
to evaluate solutions according to their fitness and iteratively
“improve” a population. However, in the data-driven sorting
problems that we aim for, we usually have given data sets
that we do not want to change.

Hence, we need a formalism describing how a system of
fixed solutions interacts with each other. This is where evolu-
tionary game theory comes into play.

6 See also [4] for a good overview of evolutionary algorithms.

7 See also [5] for a discussion on methods in genetic algorithms.

8 One can however combine the merits of both worlds to a common “super-algo-
rithm”. One way of doing this is to take the generative magic from the optimizati-
on algorithm to create a set of new solutions every iteration. The sorting algorithm
takes these new solutions and sorts them into order. The front-runner solutions
are then handed on to the optimization algorithm again to create solutions for the
next iteration.
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An introduction to evolutionary game theory

It was 2001, when the movie “A Beautiful Mind” spotlighted
game theory for a non-mathematical audience. In the movie,
the real story of John Forbes Nash mesmerized people all
over the world. Interestingly, Nash is one of the few mathe-
maticians obtaining a Nobel Prize (in economic science).

Aside from “A Beautiful Mind”, it is somewhat ironic that game
theory is one of the most underestimated fields of mathemat-
ics. The reason for this lies in the fact that the examples and
investigated systems look simple at first glance®. However, on
closer examination, these “simple” systems hold rich dynam-
ics which often take years to understand.

Hawks VS Doves

Assume you have a population with two principle survival
strategies: (H) hawks type: members of this group will fight
every opponent viciously for any resource, (D) dove type:
members of this group will give in on aggression and other-
wise try to cooperate with any opponent to share any re-
source. For every round of the game one selects two
members of the population at random and lets them interact
where the resource V is the prize. If two hawks meet each
other one will win half of the time while losing in the other
cases (“losing” meaning they have to “pay” the price C in
resources).

One can visualize the rules of the game as follows

Payoff meets meets
Matrix hawk dove
If hawk V/2-C/2"° |V

If dove 0 V/2

Adding evolutionary concepts to game
theory, evolutionary game theory [7,8]
managed to explain many at the first
glance surprising strategies in animal
behavior, like altruism and eusocial animal
colonies (see also Hawks VS Doves).
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In the 1970s, and with game theory in mind, John Maynard
Smith and George R. Price were asking themselves

Why are rivaling male animals not Killing each other
more frequently while fighting against each other?

Taking out opponents for reproduction appears to be a viable
strategy in a naive game of “survival of the fittest”. Somehow
nature thinks otherwise and usually lets a more balanced
strategy between aggression and defensive behavior prevail
(though, not always: see [6]).

Every game round in evolutionary game theory has two
principle phases

1. Game rules phase: Choosing two members of the popula-
tion at random and applying the payoff matrix to their inter-
action. Note that the higher the dove-population the lower
the probability of a hawk meeting another hawk. Hence,
ironically, the fewer hawks the more effective hawk-like be-
havior is.

2. Replicator rules phase: The more resources a strategy group
can gather, the more numerous they will be in the next game
round. This is mathematically described by replicator equations
like AP = P (F(P)- Mean(F(P))) where P can either be H or D in
our example and F(P) is the fitness of that population group
(how many resources they could accumulate). It is an important
aspect of evolutionary game theory that individuals cannot
change their strategy - they are born and die with it.

Running these two phases iteratively one can observe how a
model system develops with time. Will hawks or doves win in
the long run? This essentially depends on the relation of hawk-
hawk-penalty C to the obtained resource V: an evolutionary
stable strategy (ESS) is a hawk population of V/C. This explains
that if the penalty C is high (getting killed) why in male-male
animal fights the opponents do not fight to the death to win.
Too risky strategies for reproduction simply were evolutionary
not stable in the sense that a more defensive strategy prevailed.
9 Game theory investigates the dynamics of rule- and round-based “games”.
In game theory a “game” can be anything from social interactions to the politics
between nuclear powers. One of the most popular games analyzed is the
“Prisoner dilemma”: 2 players (P1, P2) can independently decide to cooperate (C)
or defect (D). In this case there are 4 possible outcomes of a game round
(P1=C/P2=C; P1=C/P2=D; P1=D/P2=C; P1=D/P2=D). Each result has different
rewards/punishments. Playing the game multiple rounds has interesting

implications in terms of social behavior.
10 The value V/2-C/2 is a statistical result derived from the 50/50-win/lose-rule
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The gene perspective

One major insight brought forward is that a single
animal organism does not act on its individual sur-
vival, but it is the genes that pass on successful
survival and reproduction strategies that are actu-
ally “playing the game”. That evolution can be seen
more as a contest of gene fitness changes the way
researchers could analyze the long-term behavior
of evolutionary systems [9].

-
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Of course, animal populations are not the only thing that
one can put into a model of evolutionary game theory. In
fact, the theory has major implications in understanding
human behavior and societies. For data analysis and sorting
however, the original formalism lacks some flexibility and
performance:

* The splitting between game phase and replication
phase makes the models rather specialized

* The pairwise interaction between members of the
population is relatively slow.

]




Is it data?
Is it evolution?

In this paper we juggle with many terms from data
analytics and evolution. Let us explain what is
meant with the used terms and their relation with
each other:

The data picture

Data model: data describe things. A data model is a “shelf
system” system to get structure into chaos. In this paper, we
only treat structured data, i.e. data that you could actually
split and distribute into the right “shelf”. Genetic Al can be
applied to any type of structured data. For the sake of pres-
entation, we will restrict ourselves to data models that can
be written in the form of Excel tables or matrices here. Note
that this does not mean that the data have to be of numerical
type, but can also be a list of labels.

Data set: a data set is a single row in our data model. Data
sets do not have to be complete, i.e. the matrix can contain
blank spaces.

Data feature: a data feature is a single column in our data
model. Hence, it describes the same attribute in all data sets.
Data element: a data element is a single cell in our Excel
table. Thus, it describes a certain data feature for a certain
data set. It is the smallest unit of information in the system.

The evolutionary picture

Evolutionary system: an important quantity of the systems
we investigate, is that they are self-sufficient, i.e. it is as-
sumed that all necessary information is covered by our evo-
lutionary model.

Organism: an organism or individual contains a set of gene
variants. Organisms will behave as one entity, making deci-
sions based on their strategy. All individuals together rep-
resent the population.

Gene: genes are grouped features of the organism. They
describe the same type of attributes in organisms and are
therefore logically connected to each other. A biological,
greatly simplified example is the gene storing the informa-
tion of the size of an organism.

Gene variant: organisms contain a certain variant of a gene.
One can think of the variant as to how a gene “acts” for the
organism, e.g. how big an organism will be.

Fitness function: organisms and genes will be evaluated in
terms of fitness. The choice of fitness function depends on
multiple factors and can be completely different for two
systems and even genes.

Strategy: In this paper, strategies mean how genes and or-
ganisms interact with each other. Genes and organisms can
follow completely diverse strategies for “success”.

Analogies between data and
evolutionary picture

Evolutionary System <> Data model: for Genetic Al, a data
model is an evolutionary system with certain organisms and
genes. The purpose of the prepared system is to be analyzed
by evolutionary simulation.

Organism <> data set: data sets “behave” like individual
organisms according to their strategy.
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Gene <> Data feature: in Genetic Al, we treat data features
as individual genes competing according to their strategy.
Gene variant <> Data element: consequently, data element
entries are interpreted as gene variants of an organism. Like
data elements, gene variants are the smallest unit in the
evolutionary system.
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Introduction to Genetic Al

From a broader perspective, evolution is the most
successful and universal process of problem solving
available for mankind. Any process of chemistry,
structural optimization, transport, distribution of
resources has already been solved by nature at
some point.

Unfortunately, evolution is slow in terms of human life ex-
pectancy - nature will find a way, but you do not know how
long it will take. Hence, we would like to keep the universal-
ity, but speed up the process to find the right solution.

With these conceptual
prerequisites and
ideas, we can now
tackle our main target:
a sorting algorithm for
all types of data.

Let us summarize the main drivers behind Genetic Al, their
drawbacks and how we intend to solve them:

Genetic Algorithms: encoding a universal problem into ge-
netic information brought us a big step forward. Unfortu-
nately, the encoding for an optimization problem is usually
very specific. By “converting” into a sorting problem of fixed
structured data, we aim to shift the encoding problem to a
local genetic fitness function. This, at the same time, also
improves performance issues with computing a global fit-
ness function.

Evolutionary Game Theory: a big advantage of this ap-
proach is the universality of the game dynamics according
to the choice of strategy. Unfortunately, the split between
game rules and replicator equations together with the pair-
wise resolution of game rounds leaves room for improve-
ment for our needs. We aim to introduce global strategies
for genes and organisms such that we can compute the in-
dividual fitness of everything all at once.

6.1

Data organisms and data genes

Let us remember what an “organism” in our evolutionary
data framework is: a data set (organism) contains a set of
data element (gene variants), e.g. a flight (organism A) costs
300 euros (gene variant a), takes 10 hours (gene variant b)
and has two stops (gene variant c):

Evolutionary Data Model

data feature a data feature b data feature c

organism A data set A element (Aa)e element (Ab) element (A,c)

organism B data set B element (B,a)e element (B,b) element (B,c)

organism C dataset C element (Ca)e element (Cb) element (C.c)
genea gene b genec

Fig.l: Organism and genes interpretation for
data
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Our goal is to evaluate and sort the fitness of all organisms
and genes in the system. The fitter an organism (data set) is
the higher its rank in the final sorting order (see also Box Is
it data? Is it evolution?). To get ranked, organisms follow a
strategy. The choice of the right organism strategy (OS)
depends on the system, but also on the application and/or
personalization (see also further below).

In Genetic Al, the second central quantity besides organisms
are genes: they represent a data feature of the system. Like
organisms, genes usually share the same gene strategy "(GS)
in the evolutionary model. Note that this is one major differ-
ence to evolutionary game theory where you usually have
multiple competing gene strategies.

11 Usually you want that all organisms follow the same strategy, such that you can
compare the data sets of the system with each other.



6.2

Organisms VS Genes

With OS and GS in place, we can start our evolutionary
“game”: in every game round (or iteration), genes compete
against each other and against all organisms. They do this
according to their gene strategy. At the same time organisms
compete against each other and against all genes - again
according to their common organism strategy.

What are the game rules? Every organism and gene has to
“act” once per round. Action usually means changing the
gene fitness in some way:

Evolutionary Game Round

organism A gene a
gene fithess a

organism B geneb
gene fitness b

organism C genec

gene fithess ¢

Fig. 2: Organisms and genes change the gene
fitness

After all organisms and genes have acted, one obtains a new
fitness for all genes (data features) and organisms (data
sets). Consequently, one can sort them and get the desired
results for this iteration. Note that with Genetic Al you can
sort both, data features and data sets, in one single step.

6.3

Multiple Game Rounds

After one iteration, one obtains new fitness results for or-
ganisms and genes. Depending on the application, one can
repeat the game with these new values. If an evolutionary
stable state (ESS™) can be obtained, depends on the OS, GS
and the given data sets. Note that some combinations of
0OS+GS always reach ESS.

Since we want to save time and resources, we can stop our
evolutionary simulation when the organism fitness F(w) and/
or gene fitness F(g) is not changing too much over different
iterations. There are also tricks to “preview” the final fitness
values with just one iteration (see below).

A main part of research in Genetic Al
comes down to investigating new,
compatible strategies. For example,
genes and organisms can act fair, unfair,
collaborative, egoistic, altruistic - the
optimal choice always depends

on the application.

6.4

Organisms and Data Strategies
In Genetic Al a lot depends on choosing the right combina-
tion of OS+GS. In a nutshell, one often wants both sides,

organisms and genes, “pulling” in different directions:

Evolutionary Balance

decrease increase
organism A - E— gene a
gene b +— —> organism B
organism C B —> genec

gene fitness

Fig. 3: Organisms and genes “pull” on the gene fitness according to their strategy
(different arrow lengths represent the strength of the “pull”).
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So how do successful strategies look like? In the following,
we give a simple example of a useful combination:

Gene strategy - GS Dominance: in this strategy, gene vari-
ants test if they are better then 50% in their gene. If yes, they
increase gene fitness depending on how much better they
are. For gene variants below 50% they consequently reduce
the gene fitness accordingly.

Organisms strategy - OS Balance: in this strategy, organ-
isms give genes a fitness penalty, if they tend to dominate
their fitness. Note that the more genes try to become more
dominant, the more an organism will “punish” them. Hence,
OS Balance somewhat works against GS Dominance.

12 Note that ESS usually stands for “Evolutionarily Stable Strategy” in evolutionary
game theory. Since strategies are usually fixed anyway, this concept does not
make much sense in Genetic Al. Here, a stable state for the fitness values is often
desirable. Hence, the last S in ESS stands for state in the following.



Getting the right flight, revisited

Let us revisit our example of three flights once again. What is the answer of Genetic Al (taking GS Dominance and OS Bal-
ance)? As a first try, let us assume that we do not really know anything about our system and which data feature might be
more important for the interested passenger-to-be. We set the initial gene fitness of price, time and stops to 33% each. We

start our evolutionary simulation and get the following result after 20 iterations.

gene fitness (%)

organism fitness (%)

0.38 |
(g —
= 0.36
gene 3 = stops fight 3
0.36
0.34- fight 2
0.34-
gene 1 = price 0.327
0.32- 0.30
0.30 0.28
gene 2 = time fighyl
T T T T T T T T T T T T T T T T T T 1 02671 7 1 1T T T T T T T T T T T T T T
0O 1 2 3 45 6 7 8 9 101 12 13 14 15 16 17 18 19 20 0O 1 2 3 45 6 7 8 9 101 12 13 14 15 16 17 18 19 20

iterations

iterations

Note that for this example and setup, Genetic Al thinks that the number of stops is the most relevant data feature of a flight
(at 37,5%) and recommends taking the third flight (the most expensive). Price comes out second at 34% importance and time
finishes last at 28,5% (see also Appendix for a more detailed analysis of these results).. Note that the system shows a nice be-
havior towards an ESS. However, the decision between second and third flight happens already after one iteration, where the
green line is above the orange and stays there. Hence, one could essentially stop the simulation at this point.

A more budget-driven user might intervene and say: “Wait, | should take the most expensive flight?”. We can include this
kind of consideration by doubling the initial gene fitness for price and reduce the fitness for the two other genes accord-
ingly. Again, we make 20 iterations to obtain the following result.

gene fitness (%) organism fitness (%)

0.6 0.50
0.45
0.5
0.40
fight 3
0.4 gene 3 = stops 0.35- ———
fight 2
0.3 gene 1 = price 0.30+ fight 1
gene 2 = time 0.25
0.2 0.20—
T T T T T T T T T [ T T T T T T T 11 T T T T T T T T [ T T T T T T T T 7.1
0O 1 2 3 45 6 7 8 9 101 12 13 14 15 16 17 18 19 20 0O 1 2 3 45 6 7 8 9 101 12 13 14 15 16 17 18 19 20
iterations iterations

First, note that the ESS is the same, independently of the starting values for the chosen strategies and the system needs
all 20 iterations to stabilize. However, in Genetic Al, we can stop the simulation at any intermediate step. If we stopped at
4 iterations, the answer to the right flight would be “Take the second flight”, since it offers the best balance between price
and time. It is important to mention that the point of stopping is not a random choice for Genetic Al. Unequal starting values for
gene fitness can be seen as a perturbation of the system. The way that the evolutionary system reacts to this perturbation holds
information in itself. Whether one lets the system relax to the ESS depends on the application and performance considerations.
Choosing the right time to stop the simulation can also be trained controlling the quality and plausibility of results.
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6.5

Customizing your Genetic Al - Personalization

We have now introduced the basics of Genetic Al. As an
immediate follow-up question one might ask: how useful is
it? In the most part this boils down to how flexible it can be
applied to different (sorting) problems (for the quality of
results see below).

Customizing your Genetic Al model usually works with two
methods: First, one can adapt the OS+GS combination. Sec-
ond, one can change the initial fitness of genes. Since the
former represents a question of current research, we will
focus on the initial fitness in the following.

By adapting the initial fitness of genes you can essentially
tell the evolutionary simulation your preferences. Imagine
you look mainly at the price when it comes to flights (see

Get the right flight, revisited). Then, you will give the gene
describing the price an initial push. Consequently, you can
create a personalized “profile” of gene fitness values for
each application/user.

Setting up the right initial values for gene fitness can seem
difficult at first. You can however use a reinforcement learn-
ing approach to improve these values over time.

It is interesting to interpret the change of the OS+GS com-
bination as a preparation of the “right” habitat for the evo-
lutionary simulation. At the same time, changing the initial
fitness of genes corresponds to defining the “right” starting
conditions for the simulation. Both means together provide
a very versatile way to customize Genetic Al.

6.6

Types of Genes and the Distillate

In the practical application of Genetic Al one often finds two
types of data features: (i) “hard” features like the price of a
product where the values do not change that dramatically
(ii) “soft” features such as the correlation between user ac-
tions of different products that change all the time as the
system progresses. Correspondingly, hard data features are
described by hard genes and soft features as soft genes.
Both types of genes usually require a different handling,
fitness function and, most importantly, strategies. Most of
the time, hard genes are much easier to handle and can be
grouped easily. Soft genes on the other hand require special
treatment and preparation.

The main problem with soft genes is that they usually store
a lot of information. Hence, one requires a special method
to update and control soft genes and quickly compute strat-
egies and fitness values: distillation.

Imagine you have thousands of user interactions per hour
you want to use as a soft gene in Genetic Al. Then you need
an intermediate quantity between your application and your
Genetic Al model:

Genetic Al
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Data Distillation in Genetic Al

anonymization organ
user data —mei ‘ E— :f», § é
distillation
Application Distillate* Genetic Al

*circle size greatly exaggerated

Fig. 4: The process of data distillation in Genetic Al. An application continuously
feeds data into the distillate during which it is anonymized. An organ covering the
user data’s genes “consumes” the distillate when it calculates the corresponding
fitness values (this can also happen at a later time as distillation occurs). All steps
happen dynamically and in real-time.

While user data bases might contain above 100 GB of
data, distilled data is usually smaller by at least a factor
100. Still, the distillate contains the collective information
about the soft gene and allows for a fast evolutionary
simulation. By distilling the user data you also obtain a
useful side effect: the data get fully anonymized and

cannot be tracked back to the user.



6.7

Interconnected Evolutionary Simulations - Organs

In real world applications, one can often group genes to-
gether according to what they describe. Evaluating these
gene groups and the corresponding sub-organisms inde-
pendently from the full system, allows us to choose the
OS+GS very specifically. In Genetic Al we call these grouped
sub-simulation organs:

Organs (Genetic Al)

organism (A,alpha) —» organalpha — fitness (A, alpha)
organism (B,alpha) —» « = g —> fitness (B, alpha)
organism (C,alpha) —» —> fitness (C, alpha)

Fig. 5: An example of a Genetic Al organ. The organ computes the fitness for the
alpha-part of the organisms.

Organs produce a set of fitness values for the genes and
organisms they contain. Multiple organs can be combined
in an hierarchical way to “work” together to solve the full
problem. Usually you channel the information of all organs
into one final simulation containing the all preliminary fitness
values as individual genes:

Multi-Organ System (Genetic Al)

(A-C, alpha) organ alpha fitness
(A-C, alpha)
organism A e E e
s 3 g » Organ —
gamma
organism B
© I _>
5 %
© a
ism¢C organ beta o @
organism \ ° —> E’. s —>
h-l @ -
52 |5
(A-C, beta) ) pol fitness fitness
(A-C, beta) A-C

Fig.6: An example of a multi-organ system containing 2 preliminary organs alpha
and beta. Note that the partial gene fitness values are channeled into a final organ
gamma computing the overall fitness for the organisms A-C.

Another aspect of multi-organ systems is their capability for
parallel processing. Since many organs can do their part in
the analysis independently from each other, one can save a
lot of computational time if one lets them run in a parallel
way.

/

ﬁathematical Formulation of Genetic Al

Similar to the conceptual setup, Genetic Al also
takes many inspirations from GAs and evolutionary
game theory when it comes to the mathematical
framework. Note that this section is not obligatory
to follow the other parts of this paper.

In the previous sections, we outlined the basic principles in
Genetic Al: genes interact with each other and with organ-
isms (a set of gene variants). In mathematical terms, we now
have to define the describing quantities that evolve during
the evolutionary simulation. In most cases, one follows the
progress of organism and gene fitness through the genera-
tions (iterations). What genes/organisms become fitter,
which see a decline? We call the equations by which the
system evolves, replicator equations, since one can interpret
the iterations in the simulation as individual gene abundance
becoming higher or lower.

13
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Let us denote the raw data matrix as X containing n rows
(organisms) and m columns (genes). Then, we have as genes
and organisms, respectively

.&‘J‘ = [fy)(ﬂ‘.lnj}l e !fg_.(mﬁf]] E‘}i = [f_t,',{:rr'l}: e sfg,.,(:rirri)]

where 0 < f, <1
denotes the fitness variant function of that gene™®. Our goal
is to compute the fitness of genes and organisms, respec-

i 14 . — —
tively 0< ‘r}” <1 Fu(@i,7)

where (k) denotes the iteration of the evolutionary simula-
tion®™. Note that denotes the initial values for the gene fitness
that have to be provided with the start of the simulation.

13 Note that we distinguish between fitness of the entire gene and the fitness of the
gene variant inside of the same gene. One can see the fitness variant function
as a way to measure how strongly a particular gene is active in an organism,
whereas the fitness function measures how strongly a gene is active in the whole
evolutionary system. In the most simplest case, with binary data O or 1, the fitness
variant function is f(0)=0 and f(1)=1, i.e. the identity.

14 Note that we assume a scalar gene fitness here for simplicity. In general, the gene
fitness is described by a function similar as for organisms.

15 Note that in most cases also the organism fitness is a percentage value, but there
is no need to restrict ourselves here.



Replicator equations
for Genetic Al

Analogously to evolutionary game theory, replicator
equations describe how to obtain the gene fitness of
the iteration (k) from other quantities. Of course, our
replicator equations depend on the chosen strategies
OS+GS. Let us start by defining the local effective
change to the gene fitness stemming from gene and
organism strategy, respectively

A% = ¢ (£(X),v* Y., 1)
Ay™ = QOS(£(X),9%, ..., )

Please see Equations for GS Dominance and OS Bal-
ance for an example of these functions. Note that these
Deltas can be readily interpreted as what distinct
change a specific gene or organism triggers for a spe-
cific gene variant. This feature of Genetic Al is crucial
for transparency, since one can always track down the
source of any behavior of the evolutionary simulation.
Obtaining the gene fitness for gene j in iteration (k)
then boils down to accumulating all contributions

n
(k) g:(k) w,(k)
Ayl = Z(Ai}' + Aij )
—
and normalizing the their effect
~ (k)
(k) 5

= Pa+af) " T o P

In a nutshell, replicator equations describe how genes
and organisms evolve during the simulation. Addition-
ally, they take care that the total fitness “available” to
the genes stays the same. Since no new fitness is cre-
ated, the genes have to “battle” for their share in every

game round.
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Equations for GS Dominance
and OS Balance

To understand the interplay between genes and or-
ganisms, let us take a closer look at our two example
strategies. To that end, we also need a simpler ap-
proach to organism fitness

k - =k
r{" = F(@:,7Y)
for iteration (k), namely a linear approach

m
ling— = o
ri=F"(@,7) =@-5= ) fo(ij)i
j=1
Note that the linear organism fitness is built up from
linear combination of gene variant fitness and gene
fitness. This follows the interpretation of organisms as
competing sets of gene variants [9].

We now define GS Dominance with the following
equation

. ' 1 l mn
A!-Jj(domznan.ce) = ;’yj[fg}(.ru) - E)] - ; fo,(xej)

Note that for all gene variant fitnesses bigger than 50%
the strategy will increase the gene fitness, in other
cases it will lower the gene fitness. Hence, genes with
more gene variant fitness will dominate others who
have less.

As a counterpart let us define OS Balance as
¥ifg;(Zij) B l)]

. -
A:’}(balmwe) - _EF“i n(wi’ﬂ[Fim(G}' ) m

Note that the sign is exactly the other way around as
in GS Dominance. The equation compares the local
contribution of the gene (variant) to the full organism
fitness. If a gene is too dominant in an organism, it will
be reduced consequently.
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E_valuating the Quality of Results

After you have run the evolutionary simulation, you
obtain your final values of fitness of organisms and
genes. So depending on whether you wanted to
sort data sets or data features you can consequently
sort the corresponding fitness values.

But what is the right sorting order to begin with? In multi-di-
mensional systems and in a non-model setup that is usually
very difficult to say. Hence, since you cannot predefine the
correct order for all simulations, one often resorts to defin-
ing the erroneous orders. That means, depending on what
you want to achieve you say “this data set has to be in the
top 10” or “this data set has not to be in the top 10” and by
this accumulate a set of quality rules to benchmark your solu-
tions. Note that these rules can also be defined in an auto-
mated way to save time in the setup of a data model for
quality.

One might notice that this process of accumulating quality
rules is in itself fundamentally different from ML approaches
of measuring the quality by use of training and test data (see
also Differences of Genetic Al to Machine Learning). The rea-
son is that Generic Al is not “trained” beforehand to repro-
duce certain categories of data or probabilities in one central
model. “Training” the Al means running the evolutionary
simulation and this is usually done in real-time for a specific
user or application. Two or more simulations are not con-
nected to each other in the general case'®(though Generic
Al can learn, see below). Consequently, splitting data into
train and test makes no real sense for Generic Al.

From a bird-like perspective it is not surprising that we have
to reconsider the way we measure Al quality, since the ap-
proach of Genetic Al is so much different from existing Al".
Researching different ways to benchmark results is hence a way
to expand the flexibility and range of this new technology.

9
Al Learning

How does Genetic Al learn and get better? The
principle idea is that you learn to prepare the setup
and the environment of the evolutionary simula-
tion. There are in principle three ways to do that
(compare also 6.5 Customizing your Genetic Al -
Personalization):

Changing the initial values for gene fitness: one can make
the starting fitness very unfair and give certain genes and
organisms an advantage/disadvantage in the evolutionary
simulation. The choice of initial gene fitness can be done per
user and application - this is a very easy way that Genetic Al
learns to better match a user‘s demand.

Changing the gene and organism strategies: Genetic Al
may learn to match the used strategies to the required be-
havior. Again this can be done on a per-simulation basis - the
effect of this can however be quite severe.

Genetic Al
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Improving the distillate: for soft genes, where the system
information is stored mainly in the distillate, one can learn
expanding the distillate with new data sets and correlations.

The actual process of learning can be done manually,
semi-automated or fully automated. Manually meaning that
you observe quality benchmarks and adapt parameters and
strategies. Semi-automated learning may consist of daily
reports with options to improve the quality of your simula-
tions. Fully automated may include 2 different sets of initial
values and distillates that “compete” each day in terms of a
chosen KPI.

16 Note that this is a nice analogy to the biological situations that two distinct habitats
with the same species can show completely different evolutionary behavior.

17 In (evolutionary) game theory the “result” of the game, i.e. the distribution of
strategies, is the “right” answer per definition. This is the case since one has created
the game to learn something about (evolutionary) systems by means of game
theory. There is no one to stop you when you compare the distributions to real-
world evolutionary systems (e.g. the behavior of males/females in a population).
This is however done on a per-system basis - and not automated for abstract data
as we need it.
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Complexity & Performance

We have learned that Genetic Al provides a versa-
tile way to sort general data. But is it fast? In nu-
merics one measures the complexity of a problem
also in terms of how many computations are need-
ed to obtain a result.

In Genetic Al, in order to compute the Deltas

ALY = G704 * Y, )

AyH = QOS(£(X),7* D, ...,y

1

you roughly have to do 1-5 computations per data element
(gene variant) for each Delta, depending on the chosen
strategies. If you have n data sets and m data features this
means you have approximately 8*n*m number of computa-
tions per iteration.

Genetic Al
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An organ usually has up to 20 data features at the maximum.
The number of data sets n, however, can become very large.
In this case, we usually prefilter data sets according to im-
portant features to reduce this number below 1000. Thus,
we get to around 160.000 calculations per iteration which
results in a computation time of milliseconds.

An important aspect of Genetic Al is that very often 1-2 it-
erations are enough. On the one hand that is because we
are sorting - it is enough to know whether organism A comes
before or after B (see also Getting the right flight, revisited).
On the other hand that is because the general trend in gene
fitness can be extrapolated and one obtains reasonable es-
timates for many applications.




Differences of Genetic Al to

Machine Learning

As a new technology, it makes sense to compare Genetic Al to the most successful approach currently
available: Machine Learning. Note that this is not straightforward, since the two technologies do not even
use the same language when it comes to training or learning. Hence, let us compare the technologies

in four domains: data, structure, training and goals:

Data

ML usually analyzes large data sets for patterns and
correlations. Genetic Al is agnostic when it comes to
data: you can input three data sets, but you could also
input one million. Additionally, there is no central data
model in Genetic Al, but every simulation is a new,
independent game.

Structure

In ML one usually has a sophisticated training phase at
the beginning, where a large amount of computational
resources are invested to understand the data. After-
wards, the application of the trained Al model on new
data is often much more lightweight than the training.
Contrary, in Genetic Al, there is no preliminary training
phase. Everything training and applying the Al model
happens at the same time.

Training

in ML one has to take care to correctly select the right
training data to cover the demand of the Al problem.
Problems like overfitting and bias are difficult to con-
trol since the “effect” of a single data set in training
cannot be backtraced. In Genetic Al there is naturally
no overfitting since the to-be-sorted solutions are the
only possible “source” of results. Preventing bias is
connected to the evolutionary strategies used. In gen-
eral, it is very difficult to create a biased strategy that
is stable for all kinds of data. Thus, bias would only
come into play when one would try to “force” it into
Genetic Al. Ironically, that is exactly the opposite situ-
ation as in ML where one tries to “force” the bias out
of the Al model.
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Goals

in ML one tries to find patterns and categories in data. In a
sense, the aim is to spice the data with a “meta-structure”
that can then be used to solve all kinds of problems. In Ge-
netic Al, one tries to understand the “nature” of data, mean-
ing to find the underlying behavior and correlations. By
differentiating relevant data features from less relevant traits
one obtains a deeper understanding of the data space in
question.

Apart from differences there of course
lies a lot of potential in letting ML and
Genetic Al work together. One example
of how to do that is to let Generative Al
generate solutions to a problem and
afterwards allow Genetic Al to sort out
the right one. In this sense an LLM could
be a dedicated organ in a multi-organ
setup of Genetic Al. (see aiso 11.6 Full Muiti-Organ

Interconnected System)



n

Practical Applications of Genetic Al

In this paper, we have seen that Genetic Al provides a very versatile way to solve MDS problems in a
universal data regime. But, in practice: where can it be applied? In this section we give a few examples
how Genetic Al can be used with minimal adaptations. Note that this list is by no means exhaustive in

any sense.

i
As Recommendation Engine

Imagine you have a pool of products (or services) you want
to show users. Which product(s) do you present to which
user? Genetic Al offers a straightforward way to sort the
offers according to the users preferences.

In these kinds of applications, one predominantly uses the
initial values to personalize the final sorting results. This has
the advantage of being very flexible, stable and fast. Note
that you usually need some kind of prefiltering to prepare
an evolutionary system of feasible size.

The use of Genetic Al as a recommendation engine has
several advantages:

* You can directly take the available pool of products that
are currently available and sort it individually for the user.
By doing this you circumvent the need of product catego-
ries and complex Al models to predict the interests of the
user.

* As a welcome side-effect you rule out any bias or overfit-
ting. These drawbacks find their way into ML systems, since
they compute the Al model from a “separate” set of train-
ing data beforehand. In the end, they have to take care that
the training “world” and the real “world” do match to a
high degree to each other. In Genetic Al you do not have
a preliminary training phase - hence, you will not meet
these problems at all.

* Since the individual evolutionary simulations are mutually
independent, you do not need any personal user data ex-
cept for the user history.

* The choice of the right evolutionary strategies can usually
be easily derived from the field of products or items to-
be-sorted.

1.2
As Decision Engine

Think of a personal situation where you had multiple choices
and a lot of decision parameters. A common approach is to
make a pros and cons list and then weigh the arguments
thinking about the consequences. With Genetic Al, you can
do this in a much more structured and automated way for
universal decisions.

The magic behind Genetic Al as a decision engine: the only
thing that is needed is a principle understanding in the na-
ture of the decision. With this, the optimal choice of evolu-
tionary strategies is usually straightforward.
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1.3
As Search Engine

Search engines paved the way for the growth of the internet
in the first place. Lately, they have begun to struggle with
the amount of data and with issues of personalization.
Since finding the right search results is nothing else but
sorting data sets, Genetic Al shows great potential as a
search engine. One big advantage is that you can easily
personalize the results in a decentralized manner - directly
at the device of the searching user.



1.4

As Discovery Engine

A discovery engine is like a mixture of recommendation and
search engine. It shall show you what you are looking for -
and much more than that. Discovering new things and de-
cisions allows users to learn to treasure the available pool of
items. Genetic Al allows to create this experience without
any bias and hidden agendas.

1.5

As Prediction Engine

One application of Genetic Al that is not in the principle fo-
cus of this paper, is the prediction of things. However, it is
only a small step from understanding the nature of a data
system and predicting how it will evolve. Note that Al mod-
els for predicting need special care in terms of data features
and quality. Additionally, choosing the right GS and OS
strategies might not always be as straightforward as for
other applications.

1.6

Full Multi-Organ
Interconnected System

Towards the end of our introduction to Genetic Al, let us
accumulate all functionalities and take them all the way to
the end, outlining a complex multi-organ system. For multi-
ple organs to work together they first need very specialized
roles and strategies. Second, they have to be interconnected
in @ way such that they act like an intelligent “orchestra” of
evolutionary simulations.

As afirst step to plan the system, one has to group the genes
in a meaningful way: hard genes that describe similar traits
are accumulated into one organ. Analogously it works for
soft genes™. In our system to choose the right flight, the
given grouping of the hard genes price, time and stops rep-
resents a straightforward example for a simple organ “Hard
flight data”. Another organ could be “Airline Satisfaction”
covering the user data of airline information as a soft gene
(which user liked/dislike travelling with which airlines).
Both organs provide a list of organism fitness - one for “Hard
flight data” and one for “Airline Satisfaction”. Both lists are
sent to a third organ “Complete Analysis” as genes. After
the evolutionary simulation in the organ “Complete Analy-
sis”, one obtains a final list of organism (=flight) fitness in-
telligently combining “hard” flight data with “soft” airline
satisfaction. Note that all organs will in general use com-
pletely different evolutionary strategies. They do not “know”
anything about the later use of their fitness output and will
just “try” to solve the local data problem in the optimal way.
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There are essentially no boundaries on the number of organs
that can be used in Genetic Al. Comparing the concept of
“organs” to “layers” in Neural Networks, one can observe
that organs allow for a more direct and transparent control
in between input and output data. On the other hand, Ge-
netic Al multi-organ systems are currently built for a specific
application and cannot be applied freely to such a wide
range of problems as for neural networks. However, the
evolution of Genetic Al is just at the beginning.

18 The reason why hard and soft genes are grouped in different organs would go
beyond the scope of this paper. In a nutshell, hard genes are much less dynamic
and can be safely described with relatively simple evolutionary strategies. For two
soft genes it is difficult to describe them with one strategy so they often end up
alone or with a single, similar soft gene partner.
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Our Al Requirements revisited

We started our analysis by listing a set of must-have requirements for the Al of our dreams. We are now
ready to revisit our rules and reflect on if and how Genetic Al fulfills them:

Stability

Since Genetic Al “identifies” the nature of data, it is very
stable for most applications. Results and consequently an-
swers to problems hold firm even if single data sets are taken
out or changed. The two main reasons for this: (i) sorting
algorithms have a higher grade of stability than other tech-
nologies per definition and (ii) the evolutionary behavior of
many strategies is relatively universal.

Decentral Data and Model

|u

There is no central model for Genetic Al, since all the to-be-
sorted data sets are just taken as-is into the simulation. For
soft genes an anonymized distillate is taken e.g. containing
the user experiences of the system. In principle, this distillate
can be distributed among peers, can be updated decentrally
and does not have to be the same for all users in the system.

Follow-the-rules

Since Genetic Al does not generate things, one can simply
restrict to data items that follow the rules. Additionally, one
can use organs that push items with high ethical standards
for example.
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4

Transparent

In Genetic Al, all intermediate steps of the analysis can be
investigated and clearly understood. Without any “hidden”
layers or “black-box” components, transparency boils down
to how to show the reached data understanding to the user
in terms of UX strategies.

©

Non-conformist

To create a “conformist/uniform” Genetic Al has never been
tried, but we assume that this is not ruled-out by the technol-
ogy itself . Our approach to create very diverse results is to
take evolutionary strategies that favor non-average behavior.
However, to use Genetic Al in the right, diverse way in the end
depends on the individual or group applying it to a problem.

6

Low Resources

As we have seen in the section 10. Complexity & Perfor-
mance, Genetic Al uses very limited resources. In terms of
user benefit per invested resource, Genetic Al is clearly superior
to many established technologies.
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Outlook

As long as there is life on this planet, there is evo-
lution™. Apart from physical and chemical bound-
aries, evolutionary processes have primarily shaped
the habitats and societies around the globe. For us
it thus seems natural to apply evolutionary con-
cepts to universal data analysis and artificial intel-
ligence - what can possibly go wrong?

The “evolution” of Genetic Al itself began in 2018, when the
first ideas started to crystallize. Still, only a very limited
number of people have shaped the technology so far. It is
our vision that this paper helps to spread the “seed” of Genetic
Al. We imagine new evolutionary strategies and new multi-or-
gan approaches to be created by other teams - and to

benchmark and compare them for an increased quality of
simulation. In technical means, Genetic Al is nothing more
than a toddler making its first steps.

We hope that this paper also leads to different perspectives
on Al in general. What kind of Al do we want? Will it lead us
to a better future as individuals and societies? In the end,
Genetic Al is yet another technology - it is neither good nor
evil. It is the people that are behind the machine that make
the difference.
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Appendix

Getting the right flight, mathematically revisited

Let us investigate why certain data features (genes) are up-
or down-voted by the combination of GS Dominance + OS
Balance. With the raw data in mind

Raw Price Time-of- Stops
Data (Euro) transfer (h)

Flight A 300 10

Flight B 600 5

Flight C 1500 4 1

let us apply our local fitness functions to the gene variants

Fitness Price Time-of- Stops
Data (Euro) transfer (h)

Flight A 0.8 0 0
Flight B 0.6 0.5 0
Flight C 0 0.6 0.5

Note that we used a simple inverse fitness function to all
genes which scales the entire data interval to [0, min(data
feature)]. Using another local fitness function would lead to
different results 2.

The important thing about GS Dominance is that it “meas-
ures” the asymmetry of a gene with respect to 50%. This

becomes clear if one adds up the individual contributions of
the gene variants (for the first iteration of the all-33% initial
gene fitness example)

mn
AP - 2 ALY = [-0.03,-0.1,-0.11]
with all Deltas being recessive, but the first gene “price” still
with the weakest effect. This is because all mean values of
the genes [0.47, 0.37, 0.17] are below 50%.

Let us investigate the effect of OS Balance on the gene fit-
ness. Accumulating the Deltas analogously to above we find

w,(k=0) o, (k=0)
A = AP = [-0.04,-0.01,0.06]
i=1

with the first gene being too dominant, the second gene
balanced and the third gene being too recessive, respec-
tively, from the organism perspective. The recessiveness of
the third gene can be understood since it contributes nothing
to the fitness of flights A and B.

Taking both contributions together one can conclude that for
the third gene both strategies “pull” in opposite directions
while the second gene gets diminished by both contributions,
genes and organisms, respectively. The biggest effect how-
ever is created by OS Balance for the third gene “stops”.

Getting the right flight, data interpretation

Why does the data feature “stops” come out as the most im-
portant in our flight example? In terms of local fitness function
we have seen that flights A and B (i.e. the majority of flights)
have a value 0% on that gene. At the same time, flight C is the
only data set to have the value 50% for the gene “stops”.

In terms of uniqueness of a data feature the “stops”-feature
is thus the most relevant, since only one data set has a non-
zero value. In the setup, Genetic Al hence surmises that the
data feature “stops” should be especially “treasured”. We can
test this argumentation by changing the raw data for flight B:
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Fitness Price Time-of- Stops
Data (Euro) transfer (h)

Flight A 0.8 0 0
Flight B 0.6 0.5 0.5
Flight C 00 0.6 0.5

Note that now also flight B has just one stop. Running one
iteration of Genetic Al one obtains

AT~ 1-0.6,-0.9, -0.9]

meaning that the gene “stops” behaves like the gene “time”
now since we have removed the uniqueness.

20 One possible adaption would be to not use a linearly decreasing fitness with
larger price, since customers usually interpret a price twice as high as much worse
than twice as bad.



