
Genetic AI: Evolutionary Games for ab initio dynamic Multi-Objective Optimization

P. Wissgott1
1 danube.ai solutions gmbh, 1040 Vienna, Austria

We introduce Genetic AI, a novel method for multi-objective optimization without external pa-
rameters or predefined weights. The method can be applied to all problems that can be formulated
in matrix form and allows for a data-less training of AI models. Without employing predefined rules
or training data, Genetic AI first converts the input data into genes and organisms. In a simulation
from first principles, these genes and organisms compete for fitness, where their behavior is governed
by universal evolutionary strategies. We present four evolutionary strategies: Dominant, Altruistic,
Balanced and Selfish and show how a linear combination can be employed in a fully self-consistent
evolutionary game. Investigating fitness and evolutionary stable equilibriums, Genetic AI helps solv-
ing optimization problems with a set of predefined, discrete solutions that change dynamically. We
show the universality of the approach on two decision problems.

I. INTRODUCTION

In the past two decades, the rise of Big Data has proven
pivotal for many industries and markets. With this shift
to the realms of data comes a huge need for optimization
and data analysis e.g. for automation, pattern recogni-
tion, prediction, consumer needs or decision making.

In many of these problems, one finds methods falling
into two classes of algorithms: (i) optimization, where one
aims to find the optimum in a manifold of solutions [1] or
(ii) Machine Learning (ML), where one trains AI models
to gain knowledge about a system [2].

On the one hand, in many optimization algorithms,
there is a setup phase before the actual optimization.
For example, in evolutionary multi-objective optimiza-
tion (EMO), one usually converts the data to an evolu-
tionary picture where the applied encoding usually de-
pends on the problem field [3]. Additionally, depending
on the algorithmic variation of EMO, one may select rules
which objective dominates another or chooses weights in
a weighted cost/fitness function [4]. Fundamentally, in
these kind of algorithms, there is a certain form of precon-
ditioning, influencing the dynamics of the optimization.
While for some systems, predefining multi-objective be-
havior may work out well, the same rules may fail to meet
quality requirements in other applications. See Fig. 1 for
a visualization of the workflow in general optimization.
Note that one defining feature in many optimization al-
gorithms is the lack of input data, since they generate
their own solutions in a feedback loop.

On the other hand, algorithms from the field of Ma-
chine Learning (ML) depend much less on predefined
quantities. In a training phase, they learn the ’right’ be-
havior for a certain data problem [5]. After an ML model
has been trained for a specific application, it can convert
input data to an output through inference [6]. While this
approach makes ML usually more universal than rule-
based algorithms, choosing certain training data may be
interpreted as statistically preconditioning the AI model.
Consequently, models in ML highly depend on the choice
of training data, biasing the result an ML algorithm will

FIG. 1. Methodological comparison of the workflow in opti-
mization algorithms, Machine Learning and Genetic AI.

deliver. See Fig. 1 for a visualization of the workflow in
general ML algorithms. Note that the training phase and
the inference phase (converting input data to output) are
distinct steps that are usually covered by rather different
algorithmic strategies.

In this paper, we propose a novel approach, apart
from rule-based optimization and ML: Genetic AI. Our
method identifies a result from input data without any
statistical preconditioning or training. In contrast, Ge-
netic AI solves data problems by an ab initio approach:
converting the input data into a universal, evolution-
ary representation allows to run autonomous simulations
without the need of any predefined behavior [7]. See
Fig. 1 for a comparison of the algorithmic workflow in Ge-
netic AI. Methodologically, Genetic AI somehow ’stands’
in between (evolutionary) optimization and ML: using in-

ar
X

iv
:2

50
1.

19
11

3v
2 

 [
cs

.N
E

] 
 8

 M
ay

 2
02

5



2

put data is reminiscent of ML, while employing an (evo-
lutionary) feedback loop relates to optimization. Addi-
tionally, as we will see below, Genetic AI uses replicator
equations and ’game rounds’ as introduced in evolution-
ary game theory (EGT, [8, 9]).

In the current formalism, Genetic AI can be applied to
any discrete optimization problem where possible solu-
tions can be represented in matrix form. Through evolu-
tionary dynamics, Genetic AI not only finds the optimal
solutions but also tests universal symmetries, uniqueness
and relations in the data to gain understanding of them.
Instead of predefining algorithmic behavior, these simu-
lations open up a new route to fundamentally analyze
the mechanics of a system described by data.

How do we obtain knowledge of a system without defin-
ing the ’right’ behavior in terms of predefined weights or
training data? We achieve this by ’translating’ input data
directly into a biological system that self-consistently
reaches an evolutionary equilibrium. In this paper, we
present our approach as follows: in Sec. III, we describe
how the input data can be converted into an evolution-
ary picture of genes and organisms. Then, we proceed
by introducing the details of an evolutionary simulation
in Sec. IV. The dynamics of the evolutionary model are
governed by evolutionary strategies, described in Sec. V.
After running the simulation with these strategies, we
obtain data features that are deemed more relevant.
In Sec.VI, we discuss the dynamics of two examples.
Furthermore, in Sec. VIC, we show a method to self-
consistently converge to a stable state without external
parameters or preconditions.

Without training data, Genetic AI becomes in a sense
a more ’autonomous’ AI than general ML. This has also
philosophical implications: What is the ’right’ behavior
if not preconditioned by training? Since this paper has
introductory purpose, we will leave a deeper analysis of
these implications to future work. Note that one can rein-
troduce a a certain kind of training into Genetic AI (see
Sec. VE3).

It is important to emphasize that Genetic AI goes be-
yond purely statistical approaches. Instead of statistical
behavior, the individual structure of the input data at
hand determines the result of the evolutionary simula-
tion. In particular, statistical outliers that would be re-
moved in other methods, often play an important role
in Genetic AI. As in real biological systems, a single
variation in a gene can effect the whole population (see
Sec. VIB).

II. BACKGROUND

Applying evolutionary concepts to non-biological prob-
lems has a long history in science and engineer-
ing. Most methods, from the early evolutionary algo-
rithms (EA,[10]) to the field of neuroevolution [11], share
an abstract interpretation of data. In this sense, these ap-
proaches are rather universal in terms of problems they

can be applied to, as long as the model’s parameters can
somehow be encoded into the computational formulation
in a meaningful way. Following this philosophy, Genetic
AI aims to ’translate’ a data problem into an evolution-
ary ’game’ of genes and organisms.
In addition to evolutionary algorithms, Genetic AI is

also related to EMO [3]. Quite similar to EMO, one ob-
jective of Genetic AI is to sort solutions according to their
fitness and taking into account trade-offs between differ-
ent objectives. There are however major methodological
differences between Genetic AI and existing methods in
EMO: (i) there is no continuous solution space or gen-
eration of new solutions in Genetic AI - only the given,
discrete ’solutions’ from the input data take part in the
evolutionary simulation, (ii) in contrast to weighted ap-
proaches in EMO, Genetic AI dynamically adapts the
weights themselves during the simulation, (iii) in general
Genetic AI, there are no preferences for objectives defined
before, during or after the simulation, (vi) in Genetic AI,
there are no externally dominated/non-dominated rules
but behavioral strategies.
Though we created Genetic AI from scratch without

using any scientific references, we employ many terms
from EGT [8, 9, 12–15] in our formulation. This has two
major reasons, (i) we can stick to well-known vocabulary
in describing Genetic AI (though most quantities differ
at least slightly from their direct analogue in EGT); (ii)
the formalisms introduced in EGT are very versatile for
general evolutionary simulations.

III. FORMALISM

Let us in the following restrict to discrete optimization
problems where the solutions can be represented as rows
in a (n×m)-matrix form

Xp =

a11 · · · a1m
...

. . .
...

an1 · · · anm

 with Xp ∈ D (1)

where aij can be in general any form of structured data
element and D denotes a problem family where all Xp

share the same principle structure of columns.
In some methods for multi-objective optimiza-

tion (MOO) one would pre-select weights analysing the
problem family D. In contrast, in ML algorithms, one
would try to obtain as many data packages Xp as avail-
able to train the wanted optimization dynamics according
to predefined behavior. In Genetic AI, every Xp poses an
independent, discrete optimization problem that is solved
by evolutionary mechanisms.

A. Genes and Organisms

We now identify genes and organisms in our data. In
biological systems, organisms can be understood as repli-



3

cator machines of genes [16]. In this interpretation, or-
ganisms are assembled according to the plan stored in
the genes.

Quite similar, solutions or data sets are just a ’wrap-
per’ of a list of logically related data features. Conse-
quently, a solution is ’built up’ from data features anal-
ogously than organisms are built up from genes. Hence,
we consider the mapping

gene ↔ data feature (2)

organism ↔ data set. (3)

At this point it is important to differentiate between a
data feature, i.e. a data column in Eq. (1), and a data
element aij , constituting the smallest unit of information
in the system.

In the genetic picture, gene variants define how a cer-
tain gene is expressed in a specific organism of the pop-
ulation. Taking for example a gene that is related to the
size, a specific gene variant makes the particular organism
larger or smaller. In the data picture, data elements de-
fine how a certain data feature is ’expressed’ in a partic-
ular data set. Hence, whereas data feature map to genes
in Genetic AI, data elements map to gene variants

genes variant ↔ data element. (4)

In the following we will switch between evolutionary and
data picture smoothly and will use the analogies Eq.(2)-
(4) interchangeably.

B. Fitness functions & Population

In Genetic AI, there are three different levels of fitness
sorted from lowest to highest organisational hierarchy (i)
the gene variant fitness ϕ, (ii) the gene fitness γ, (iii)
the organism fitness F . We will generally assume that all
fitness functions are positive functions

f : x 7→ f(x) with 0 ≤ f(x) ≤ 1, (5)

where f denotes the gene variant fitness function ϕ, the
gene fitness γ or the organism fitness function Formal-
ism F , respectively. Note that during iterations of the
evolutionary simulation, the gene fitness may violate the
range Eq. (5), but will always be normalized at the end
of the replication cycle (see further below).

In the gene variant fitness ϕj(aij) the fitness function
ϕj define how ’fit’ the data element aij is compared to
the other data elements within the same data feature yj .
In the simplest case, a gene variant fitness function is
boolean

ϕbool
j (aij) =

{
0 if the data feature j is not present
1 if the data feature j is present,

(6)

where i again denotes the ith data set. The choice of
the right fitness function ϕj for a gene variant of course

influences the behavior of the system in the evolutionary
simulation.
It is important to mention that the gene variant fitness

is determined once, before the evolutionary simulation. In
particular, it does not change during the iterations and
is thus applied as a preprocessing step on the input data
Xp Eq. (1). In the following, we will use the gene variant
fitness matrix

Φ(Xp) =

ϕ1(a11) · · · ϕm(a1m)
...

. . .
...

ϕ1(an1) · · · ϕm(anm)

 . (7)

We will also denote Φ(Xp) as the population and use the
analogy

population ↔ input data with gene variant fitness. (8)

Note that in Genetic AI the population does not change
in the evolutionary simulation. Keeping the population
unchanged throughout the simulation is a different ap-
proach compared to EMO [3] or EGT [8].
Analogously to the population, we can now also de-

fine the genes (the genetic representation of the data
columns)

gj = [ϕj(a1j), . . . , ϕj(anj)] with 1 ≤ j ≤ m, (9)

and organisms (the genetic representation of the data
rows or solutions)

ωi = [ϕ1(ai1), . . . , ϕm(aim)] with 1 ≤ i ≤ n, (10)

in terms of the gene variant fitness functions.
The second fitness introduced is the gene fitness. For

simplicity, we will use a normalized vector of positive
gene fitness γ with

m∑
j=1

γj = 1 where 0 ≤ γj ≤ 1 for 1 ≤ j ≤ m, (11)

where γj denotes the gene fitness of the jth data feature.
The gene fitness values represent central quantities in
Genetic AI. As the simulation progresses, some genes will
become more dominant or recessive.

In general, the third fitness, the organism fitness func-
tion, may depend on several quantities, e.g. the history of
gene fitness values. In this paper, we will limit ourselves
for simplicity to a linear approach

r
(k)
i = ωi · γ(k) =

m∑
j=1

γ
(k)
j ϕj(aij), , (12)

where (k) denotes the kth iteration of the evolutionary
simulation. Hence, the organism fitness is a linear com-
bination of the gene variant fitness and the current gene
fitness. In Genetic AI, one main objective usually is to
determine a converged set of gene fitness γ(k) by evolu-
tionary simulation. This means that while ϕj(aij) stays



4

fixed throughout the iterations, γ(k) and, with Eq. (12)

also r
(k)
i , evolves during the simulation.

In an evolutionary interpretation this means that the
more gene variant fitness an organism for a more valuable
gene has, the fitter the organism will be in the population.
In the example of size above that would mean that a
larger organism would be fitter, depending on how the
gene responsible for ’size’ is deemed important in the
population.

Quite similar to EGT, where system setups may look
simple on the outset [15], also the restriction to a lin-
ear organism fitness may appear as an oversimplification
at the first glance. However, analogously to EGT, the
dynamics of all organisms and genes usually leads to a
complex evolution of a system even for linear organism
fitness as we will see further below[17].

At this point, it is useful for the understanding of Ge-
netic AI to compare some basic concepts with EMO [4].
While in EMO the letter X is often denoting a subset of
the solution space S, it represents the input data in Ge-
netic AI with Xp = S, since there are no other discrete
solutions allowed as defined by the input. Furthermore,
the concept of the Pareto front as a surface of points,
minimizing individual objectives, becomes less useful in
Genetic AI. This is because by dynamically adapting the
gene fitness γ, we are effectively changing the search
space itself. Hence, instead of an optimization with fixed
objectives, the evolutionary simulation ’distorts’ the so-
lution space until the evolutionary behavior reaches a
stable state. In the next section, we introduce the neces-
sary quantities describing this dynamics.

IV. EVOLUTIONARY SIMULATION

In Genetic AI, organisms ωi and genes gj compete for
the available fitness in the system. Starting from an ini-
tial gene fitness γ(k=0) one iteratively obtains new values
γ(k+1). With the new gene fitness values, one can then
obtain the organism fitness values via Eq. (12).

It follows from Eq. (5) and Eq. (11) that the total
gene fitness cannot be created or destroyed. Hence, if
one gene gj increases in fitness γj , it comes at the cost
of some other genes. This follows the argumentation of
Dawkins [16], but since we are investigating data, it leads
to interesting observations. What does it mean that one
data feature becomes ’fitter’ than the others? In many
cases, it means that the fitter feature is more relevant
wrt. the others for the data analysis at hand.

From a algorithmic point of view, Genetic AI itera-
tively updates the gene fitness γ(k) until either conver-
gence or a maximum number of iterations is reached (see
also the pseudo code in Alg.1).

1: function Simulation(input data X, GS+OS, γ(0))
2: Φ(X)← X normalize data via Eq.(7)
3: k ← 0
4: while k < maxiteration do
5: for all genes do
6: ∆g = Update(gene, GS)

7: for all organisms do
8: ∆ω = Update(organism, OS)

9: ∆ = ∆g +∆ω

10: γ(k+1) ← ∆,γ(k) via Eq. (19)+(20)

11: r(k+1) ← γ(k+1),Φ(X) via Eq.(12)

12: if ∥γ(k+1) − γ(k)∥ < ε then
13: break
14: else
15: k ← k + 1

16: return γ(k+1), r(k+1)

Algorithm 1: Genetic AI simulation

It is important to emphasize that Genetic AI is dif-
ferent from optimization algorithms that search for local
minima in a multi-dimensional solutions space. This is
because in Genetic AI one does not create new data sets
in a (bounded) solution space. Quite contrary, the dis-
crete data or population Φ(Xp) is fixed throughout the
simulation.

Proceeding in this argumentation, it becomes clear
that another input data Xp′ , may lead to other gene fit-
ness values γ′ and hence to other optimal solutions. In
this sense, Genetic AI allows for a dynamic optimization
depending on fixed packages Xp of data sets. The solu-
tions included in a packages are analyzed wrt. to each
other and not wrt. other data packages (like e.g. train-
ing data). The mutual independence of the evolutionary
simulations that comes with this ab initio approach has
important consequences when it comes to entities like
data bias and opens up new perspectives in optimization
and data analysis.

A. Replicator Equations

In EGT, replicator equations are used to investigate
the game dynamics and which how a set of strategies per-
form in the game [9]. In contrast, in Genetic AI, there are
two fixed types of strategies: (i) the gene strategy (GS)
and (ii) the organism strategy (OS).

Replicator equations prove to be very useful to analyze
the dynamics of the gene fitness γ(k) → γ(k+1). To that

end, let us define local changes to γ
(k)
j stemming from

the genes by

∆
s,(k)
ij = Gs(Φ(Xp),γ

(k), . . . ,γ(0)), (13)

where i is the contribution of the ith data set and s de-
notes the chosen gene strategy (see below for examples).
Note that in the case of an empty data element aij , one
usually sets ∆g

ij = 0, i.e. an empty data feature has no di-
rect effect on the gene fitness. However, since all updates



5

in Eq.(13) are relative, blank spaces can have an implicit
effect on the dynamics of the evolutionary system.

Analogously, let us define the local changes to γ
(k)
j

stemming from the organisms by

∆
ω,(k)
ij = Ωs(Φ(Xp),γ

(k), . . . ,γ(0)), (14)

where i is the contribution of the ith data set and s de-
notes the chosen organism strategy (see below for ex-
amples). Note that one can interpret ∆g

ij ,∆
ω
ij as relative

surplus or deficiency of resources in the evolutionary sim-
ulation.

Hence, in general, the iterative updates γ(k) → γ(k+1)

depend on the input data, the fitness function Φ,
the strategies and the history of gene fitness values
γ(0), . . . ,γ(k). In this paper, we will restrict ourselves to a
simpler case, where only the previous gene fitness values
are taken into account

∆
g,(k)
ij = GGS(Φ(Xp),γ

(k)), (15)

∆
ω,(k)
ij = ΩOS(Φ(Xp),γ

(k)). (16)

As a next step we accumulate the contributions from all
organisms for a certain gene

∆
(k)
j =

n∑
i=1

(
∆

g,(k)
ij +∆

ω,(k)
ij

)
. (17)

For convenience, let us assume that the strategies GS

and OS are chosen that ∆
(k)
j is not changing to rapidly

in each iteration

−1 ≤ ∆
(k)
j ≤ 1 for all genes 1 ≤ j ≤ m. (18)

Let us now consider the general replicator equations
for Genetic AI

γ̃
(k+1)
j = γ

(k)
j

(
1 + ∆(k)

γj

)
, (19)

γ
(k+1)
j =

γ̃
(k+1)
j∑m

ℓ γ̃
(k+1)
ℓ

, (20)

where the latter equation normalizes the gene fitness val-
ues after the updates.

Quite similar to EGT, the gene fitness values γ(k) may
converge to a evolutionary stable equilibrium (ESE)[18].
Whether a non-trivial ESE is reached depends mainly on
the evolutionary strategies and the population Φ(Xp),
i.e. the data at hand. Even in non-converging and trivial
cases, it might still pay to investigate the dynamics after
a few iterations, because the speed of changes γ̇(k) =
∂γ(k)∂k usually leads to understanding of the underlying
data.

Another important boundary condition are the initial
values γ(0), which can be chosen either uniformly dis-
tributed or asymmetrical, taken into account preliminary
knowledge about the system. Also in this case, it is con-
venient to stop the simulation before a possible ESE is
reached - to prevent that this preliminary knowledge is
lost.

V. EVOLUTIONARY STRATEGIES

In Genetic AI, where the gene↔data-feature analogy
acts as a framework for the data model and the replica-
tor equations guarantee normalization, the evolutionary
strategies mainly determine the dynamics of the system.
Hence, a major part in the (further) development of Ge-
netic AI boils down to analyzing and comparing strate-
gies.

In general, genes and organisms compete with each
other ’in terms’ of their strategies. In this sense, organ-
isms act as ’extended phenotype’ wrt. their genes [16].
This is an important difference to purely statistical ap-
proaches in data analysis, since it may give individual
data sets highly different importance in the simulation.
Governed by the replicator equations Eq. (19)+(20) there
is a flow of fitness between the genes and organisms.

Though this ’game’ of resources and fitness and the
corresponding dynamics mimics the analogous behavior
in EGT, there are also major differences: for once, all
genes are competing against all other genes in every game
round. Additionally, the behavior of a gene is determined
by its underlying gene variant fitness and not by which
’opponent’ it encounters. Consequently, the genes and
organisms compete rather independently for a general
heap of resources according to a global strategy. In the
implementation, this algorithmic trait allows Genetic AI
to be parallelized very easily.

Most evolutionary strategies are similar in what they
do: apply a certain local data analysis function to a gene
or organism, respectively. This function measures or com-
pares properties of the input data Φ(Xp) from the ’per-
spective’ of that gene or organism, respectively.

A. Gene Strategy: Dominant

As a first strategy for gene behavior, we define the GS-
Dominant as

∆g:dom
ij =

4γ2
j

n

[
ϕj(aij)−

1

2

]
. (21)

Note that for all gene variant fitness values ϕj(aij) bigger
than 50%, the strategy will increase the gene fitness, in
other cases it will lower the gene fitness (see also Alg. 2
for a pseudo code of that strategy). Hence, genes with
more gene variant fitness will dominate others who have
less.

From an evolutionary perspective the ’Dominant’ gene
strategy Eq. (21) describes the genes ability to reproduce
itself (hence the quadratic factor of gene fitness γ2

j [19]).
The normalization factor 4 stems is required for a fair

comparison of ∆g:dom
ij to organism strategies and other

gene strategies. Also for the other strategies we will add a
factor 2 for every gene or organism fitness value included.



6

1: function Update(Φ(Xp), γ, gene, GS)
2: for all gene variants do
3: if gene variant > 50% then
4: increase gene fitness
5: else
6: reduce gene fitness

Algorithm 2: GS-Dominant

B. Organism Strategy: Balanced

Since GS-Dominant depends in a sense on asymmetry,
we require an organisms strategy that ’counteracts’ with
a balancing effect in order to allow for an ESE. Hence,
we define OS-Balanced as

∆ω:bal
ij = −2ri

n

[
µij −

1

m

]
, (22)

where µij is the contribution of the jth gene variant to
the overall organism fitness

µij =
γjϕj(aij)

ri
. (23)

Note that the expression in the brackets determines the
sign in Eq. (22). If a particular gene variant contributes
more than the mth part to an organisms’ fitness, the
value ∆ω:bal

ij becomes negative, reducing the genes fitness.
Hence, an organism ’wants’ to avoid being too dependent
on a single gene in terms of its own fitness (see also Alg. 3
for a pseudo code of that strategy). In the data picture
this means that the relevance of data features dominating
data sets gets a penalty and vice versa.

1: function Update(Φ(Xp), γ, ω, OS)
2: for all genes do
3: µ← contribution of gene to organism fitness
4: if µ > 1/(number of genes) then
5: decrease gene fitness
6: else
7: increase gene fitness

Algorithm 3: OS-Balanced

C. Gene Strategy: Altruistic

Let us now introduce a more complex strategy for
genes: GS-Altruistic. The idea is that genes exchange
fitness, depending on their ’kinship’, i.e. their genetic
similarity, and their fitness. To that end, let us define
the (symmetric) gene kinship between gene j and ℓ as

κg
jℓ = 1− ∥gj − gℓ∥

n
. (24)

We now define GS-Altruistic as

∆̃g:alt
ij =

4

m

m∑
ℓ,ℓ̸=j

γℓκ
g
jℓ [ϕℓ(aiℓ)− ϕj(aij)] , (25)

∆g:alt
ij =

∆g:dom
ij · ∆̃g:alt

ij

γj
, (26)

where we use ∆g:dom
ij from Eq. (21). To understand the

qualitative dynamics of this strategy it pays to investi-
gate the signs of the contributions

Galt
ij =

(
sign∆g:dom

ij , sign ∆̃g:alt
ij

)
. (27)

If both contributions have the same sign, ∆g:alt
ij becomes

positive, leading to increased gene fitness. In contrast,

opposite signs of ∆g:dom
ij , ∆̃g:alt

ij will decrease gene fitness.
Omitting the cases where one factor is trivial, there are
four scenarios:

: Galt
ij = (+,+): a dominant gene variant ϕ(aij) has even

more dominant relatives. These thus related genes
will altruistically give fitness to the jth gene.

: Galt
ij = (+,−): a dominant gene variant ϕ(aij) has

weaker relatives. These thus related genes will take
fitness from the jth gene.

: Galt
ij = (−,+): a recessive gene variant ϕ(aij) has more

dominant relatives. These thus related genes will
take fitness from the jth gene.

: Galt
ij = (−,−): a recessive gene variant ϕ(aij) has even

weaker relatives. These thus related genes will al-
truistically give fitness to the jth gene.

D. Organism Strategy: Selfish

Inversely to GS-Altruistic, we can also introduce the
’counter-acting’ strategy OS-Selfish for organisms. To
that end, we require the (symmetric) organism kinship
between gene i and t

κω
it = 1− ∥ωi − ωt∥

m
(28)

and the initial range of organism fitness

ρ = max
1≤t≤n

r
(0)
t − min

1≤t≤n
r
(0)
t (29)

where we assume for simplicity that not all initial organ-
ism fitness values are equal [20].
Then, OS-Selfish is defined as

∆̃ω:sel
ij =

1

n

m∑
t,t̸=i

κω
it

ri − rt
ρ

, (30)

∆ω:sel
ij =

∆ω:bal
ij · ∆̃ω:sel

ij

2ri
, (31)



7

where rt, ri are the organism fitness values. Note that
the initial range of organism fitness ρ from Eq. (29) mea-
sures how close a call the evolutionary game is for the
organisms. If ρ is small, Eq.(30) will yield larger trans-
fers of resources between closely related organisms. In the
evolutionary picture, the closer the organism are in fit-
ness in a habitat, the more extreme they will apply their
evolutionary advantages and strategies to preveil in the
environment.

To understand the qualitative dynamics of this strat-
egy let us again investigate the signs of the contributions

Osel
ij =

(
sign∆ω:bal

ij , sign ∆̃ω:sel
ij

)
. (32)

As for GS-Altruism, there are four scenarios:

: Osel
ij = (+,+): an undervalued gene j is hosted by an or-

ganism that is dominating its relatives. The organ-
ism i selfishly takes fitness from related organisms
to increase the gene fitness γj .

: Osel
ij = (+,−): an undervalued gene j is hosted by an

organism that is inferior to its relatives. The organ-
ism i has to give fitness to related organisms and
decreases the gene fitness γj .

: Osel
ij = (−,+): an overvalued gene j is hosted by an

organism that is dominating its relatives. The or-
ganism i decreases the gene fitness γj to become
more balanced.

: Osel
ij = (−,−): an overvalued gene j is hosted by an or-

ganism that is inferior to its relatives. For a stronger
relative t, the contribution of the jth gene µtj tends
to be less important, i.e. µtj < µij . Therefore, the
weaker organism i selfishly takes fitness from its
relatives and increases γj to get fitter wrt. to its
relatives.

E. Choice of Strategies

With a selection of gene and organism strategies at
hand, the question arises: which pair of strategies should
one choose? There are essentially three routes to proceed
which we introduce in the next sections.

One major observation, which will become more appar-
ent in the numerical experiments Sec. VI, is that the com-
bination GS-Dominant+OS-Balanced mainly tests sym-
metries of the system, while GS-Altruistic+OS-Selfish
mainly tests similarities or correlations of data. Hence, for
a general data analysis taking into account both realms,
we define

∆g
ij = αg

dom∆g:dom
ij + αg

alt∆
g:alt
ij , (33)

∆ω
ij = αω

bal∆
ω:bal
ij + αω

sel∆
ω:sel
ij , (34)

where
∑
s

αg
s =

∑
s

αω
s = 1. (35)

Note that one may use a linear combination of an ar-
bitrary number of strategies. Let us now come to three
different ways to choose the coefficients α.

1. Ab initio approach

Taking a closer look at the linear combina-
tions (33)+(34) it becomes apparent that the quantities
∆∗

ij have structural similarities with basis functions in
solid state physics, e.g. in Kohn-Sham equations [21].
While self-consistency in physical systems seems quite
different to our evolutionary picture, it appears natural
to look for a way to determine α (and, possibly, addi-
tional coefficients for further ’basis’ strategies) from first
principles.

The difficulty of a fully self-consistent approach is that
allowing a free competition between evolutionary strate-
gies might jeopardize reaching an ESE at some time. In
Sec. VIC, we present one way to allow the gene fitness
to converge for simple examples. In future work, with
more strategies (’basis functions’), a more generic way
for self-consistency might be beneficial.

2. Predefined choice

In real-world applications, one often understands the
dominating behavior of the system the data describes.
Hence, a predefined mixing of α or other strategies is a
convenient choice. After leaving the strict ab initio rules,
we can also customize the initial gene fitness γ(0) to
match individual preferences. This provides a very easy
method to take into account user preferences. It is impor-
tant to not let the so disturbed system relax to a uniform
ESE, but stop the simulation at an earlier stage.

3. Determine the mixing through training

Leaving the ab initio approach completely, we can also
use training data for a problem to determine the opti-
mal mixing α. In this case it pays to use the training
data to determine the optimal combination of evolution-
ary strategies, but customize γ(0) according to e.g. user
preferences.

VI. NUMERICAL EXPERIMENTS

Before getting to the numerical tests, let us introduce
some necessary examples for gene variant fitness func-
tions. Apart from the boolean function Eq. (6), we will
require the percentage fitness function

ϕper
j (aij) =

aij
max
1≤ℓ≤1

aℓj
, (36)



8

TABLE I. Simple example - input data X for a small choice
of flights.

price[Euro] time-of-transfer[h] stops

flight A 300 10 2
flight B 600 5 2
flight C 1500 4 1

TABLE II. Simple example - population Φ(Xp) with 3 organ-
isms ωA,ωB ,ωC for a small choice of flights.

price[Euro] time-of-transfer[h] stops

ωA 0.8 0 0
ωB 0.6 0.5 0
ωC 0 0.6 0.5

the inverse percentage fitness function

ϕinv
j (aij) = 1− aij

max
1≤ℓ≤1

aℓj
. (37)

Though we will only employ numeric gene variant fitness
functions here, let us quickly give an example for labelled
data

aij = [label-1, label-2, . . . , label-t]. (38)

Then, an example for an overlap fitness function could
be

ϕover
j [label-2, label-t](aij) =

Θ[label-2](aij) + Θ[label-t](aij)

2
,

(39)

where

Θ[label](aij) =

{
0 if aij does not contain the label,
1 if aij contains the label.

(40)

A. Simple Example

As a first introductory example let us investigate a
decision problem: choosing the right flight out of a list of
n = 3 offers with m = 3 data features (see Tab.I for the
input data). Since for all data features in this example,
larger is worse, we apply ϕinv

j for all columns to obtain
the gene variant values of the population (see Tab.II).

In the most simplest case, the initial values for the gene
fitness are symmetric

γ(0) =

[
1

3
,
1

3
,
1

3

]
, (41)

i.e. we have no initial preference in terms of data features.
With Eq. (12) this leads to the initial organism fitness of

r(0) = [0.266, 0.366, 0.366], (42)

i.e. it is indecisive, whether flight B or C show a superior
fitness.
Applying Eq. (21), we obtain the gene resources matrix

∆g:dom,(0) =

 0.044 −0.074 −0.074
0.015 0.000 −0.074

−0.074 0.015 0.000

 , (43)

where we collect the contributions of all rows

∆
g:dom,(0)
j =

n∑
i=1

∆
g:dom,(0)
ij = [−0.01,−0.05,−0.15],

(44)

i.e. all genes are recessive in terms of the gene strat-
egy GS-Dominant for this example. Analogously, with
Eq. (22), we obtain the organism resources matrix

∆ω:bal,(0) =

−0.119 0.059 0.059
−0.052 −0.030 0.082
0.082 −0.052 −0.030

 , (45)

where we again collect the contributions of all rows

∆
ω:bal,(0)
j =

n∑
i=1

∆
ω:bal,(0)
ij = [−0.09,−0.02, 0.11]. (46)

With Eq. (17) we arrive at

∆
(0)
j = [−0.10,−0.08,−0.04]. (47)

One reason for all gene updates to be recessive, lies in
the ’center of gravity’ of the population, i.e. the average
of all entries of Tab. II being 0.33 and thus, below 0.5.
In this sense, the X from Tab. I is a ’weak’ population of
data. However, in Genetic AI, only relative values matter.
Hence, we apply the replicator equations Eq.(19)+(20) to
obtain

γ(1) = [0.32, 0.33, 0.35]. (48)

Note that gene fitness is flowing from gene ’price’ to
gene ’stops’ whereas gene ’time-of-transfer’ remains more
or less unchanged. Consequently, with Eq.(12), this leads
us to new values for the organism fitness

r(1) = [0.26, 0.36, 0.37], (49)

i.e. flight C ’wins’ the game. In Fig.2+3, one can observe
the dynamics of the gene fitness and organism fitness af-
ter 30 iterations, respectively [22]. The reason why the
gene describing ’stops’ is increasing in relevance, is that
two-thirds of the data sets, the organisms 1+2, have 0 in
this data feature (see Tab. II) and do not ’like’ their de-
pendence on the other genes. As can be seen in Eq.(44),
though the strategy GS Dominant ’punishes’ the gene
’stops’, the organism strategy OS Balanced Eq. (46) en-
sures that this negative effect is more than remedied.
In contrast, for the gene for ’price’, both GS Dominant
and OS Balanced return negative contributions - hence,



9

FIG. 2. Gene fitness for data Tab. I using GS-Dominant+OS-
Balanced (DomBal) or GS-Altruistic+OS-Selfish (AltSel) af-
ter 30 iterations of evolutionary simulation.

FIG. 3. Organism fitness for data Tab. I using GS-
Dominant+OS-Balanced (DomBal) or GS-Altruistic+OS-
Selfish (AltSel) after 30 iterations of evolutionary simulation.

’price’ turns out to be the gene of lowest fitness. Hence,
this explains why ’stops’ comes out dominant in this sim-
ple simulation.

Let us now apply GS-Altruistic+OS-Selfish to Tab. II.
In Fig. 2, we find the gene fitness values for 30 iterations,

again starting from a symmetric initial gene fitness γ
(0)
1 =

γ
(0)
2 = γ

(0)
3 = 1/3. After the ESE is reached, the gene for

’price’ dominates the population with 39%, followed by
the gene ’stops’ (32%) and ’time’ (28%) comes out last.

To understand these results, let us investigate the ma-
trix of contributions plugging the data from Tab. II into

Eq. (25)-(27)

Galt =

(+,−) (−,+) (−,+)
(+,−) (0,+) (−,+)
(−,+) (+,−) (0,+)

 , (50)

i.e. all contributions ∆g:alt
ij are negative. Turning to the

organism contributions from Eq. (30)-(32)

Osel =

(−,−−−) (+,−−) (+,−−)
(−,+) (−,+) (+,+)
(+,+) (−,+) (−,+)

 , (51)

where multiple signs denote larger contributions. Here,
we see that the first gene/column ’price’ gets two positive
contributions i = 1, i = 3, the second gene/column ’time’
has only decreases, while the third gene/column ’stops’
has one increasing contribution for i = 2.

Accumulating, the gene ’price’ gets one very large pos-
itive contribution, one small positive and four small neg-
ative contributions. The gene ’time’ gets four (smaller)
negative contributions and one larger negative term.
And, finally, the gene ’stops’ gets one large negative con-
tribution, three smaller negative and one smaller positive
contributions. Hence, the order price>stops>time of the
strategies AltSel in Fig. 2 can be understood.

In addition to the order of gene fitness, application
of AltSel to the simple example II also shows another
important observation: how correlation comes into play
for these strategies. In particular, the gene kinship

κg =

 1 0.67 0.63
0.67 1 0.83
0.63 0.83 1

 (52)

shows that the genes ’time’¡¿’stops’ are highly correlated
with κg

12 = 0.83. Why do these two genes behave so dif-
ferently? For this dynamics, the second flight ωB takes a
crucial role. As can be seen in Tab.II, flight B has a gene
variant value of 0.5 for ’time’ and 0 for ’stops’. Thus,
Osel

23 = (+,+) for ’stops’ stems from a highly underval-
ued gene rests in an organism dominating its relatives,
whereas Osel

22 = (−,+) follows from 0.5 for ’time’ being
overvalued for ωB . In summary, whereas flight A wins
the game for ’price’, flight B decides the second place for
’stops’.

In conclusion, AltSel appears to test for correlations in
the input data. Though this observation seems trivial in
this small example, similar behavior can also be seen in
cases with much larger input data. In particular, Genetic
AI provides a way to measure multi-dimensional, cascad-
ing data correlations through evolutionary simulation.

B. Real-World Example

Let us now populate our example Tab.I with additional
data features and flight options. First, we introduce the
number of luggage a passenger can take with him/her.



10

FIG. 4. Gene fitness for the real-world example Tab. III
using GS-Dominant+OS-Balanced (DomBal) or GS-
Altruistic+OS-Selfish (AltSel) after 500 iterations of
evolutionary simulation.

FIG. 5. Organism fitness for the real-world example Tab. III
using GS-Dominant+OS-Balanced (DomBal) after 65 itera-
tions of evolutionary simulation.

Second, we take the airline rating of customer satisfac-
tion. Additionally, we add 7 additional flight options and
arrive at the data shown in Tab. III.

In Fig. 4, we show the evolution of the gene fitness for
the five genes in this example using GS-Dominant+OS-
Balanced. In this case, in the ESE, the gene ’stops’ out-
performs all others with 26% fitness. This can be un-
derstood since six out of ten flights have 2 stops, which
leads to minimal gene variant fitness ϕ3(ai3) = 0. For
this majority of 6 flights, the organism strategy OS Bal-
anced yields positive values, since the these flights want
to remedy their minimal dependence on this gene. Sum-
marizing, ’stops’ becomes the most important gene since
many organisms with larger fitness interpret two stops as
their main flaw - hence it gets upvoted.

FIG. 6. Organism fitness for the real-world example Tab. III
using GS-Altruistic+OS-Selfish (AltSel) after 500 iterations
of evolutionary simulation.

TABLE III. Real-world example - input data X for 10 flights
and 5 data features

price[Euro] time[h] stops luggages rating

flight A 300 10 2 0 2.5
flight B 600 5 2 1 3.0
flight C 1500 4 1 2 4.0
flight D 400 8 2 0 3.5
flight E 500 8 2 1 3.0
flight F 700 5 2 1 4.5
flight G 900 6 1 1 4.0
flight H 1100 6 1 2 3.5
flight I 1300 5 2 2 5.0
flight J 1700 4 1 2 5.0

The gene minimal with the minimal fitness in this ex-
ample turns out to be ’rating’. This is because of an op-
posite effect wrt. ’stops’. Since most flights have good
rating, they get downvoted in relevance by OS Balanced.
Since most flights with good fitness have a good rating
anyway, it seems not so relevant for a decision using the
strategies ’DomBal’.
In Fig. 5 we show the evolution of organism fitness

for the 10 flights from Tab. III using GS-Dominant+OS-
Balanced. Though all flights lose fitness, the flight J dom-
inates the population with a fitness of more than 57%.
Though flight J is the most expensive at 1700 Euro, this
is the only property it does not have the maximum value.
Since the gene ’price’ gets an intermediate fitness shown
with ’DomBal’ in Fig. 4, the thus obtained fitness penalty
is not enough the counter the excellent values of flight J
in the other data features.
Now we want to apply AltSel to the data in Tab. III.

As can be seen in Fig. 4, the gene price hugely outper-
forms all other genes in this case. For the dynamics in
this example, the behavior of a single organism, flight
A, plays a crucial role. In the beginning, since its fitness



11

is by far the weakest, flight A selfishly shifts a massive
amount of fitness. In the first iteration, its contribution
to the fitness updates compared to the total updates is

∆ω:sel
1j = [0.040− 0.019,−0.019,−0.019, 0.017], (53)

∆ω:sel = [0.091,−0.023,−0.030,−0.055, 0.016], (54)

i.e. flight A determines the sign and amounts to approxi-
mately 40−90% of the total updates to gene fitness from
organisms. Calculating the contribution signs from flight
A

Osel
1j =

(
(−−,−) (+,−) (+,−) (+,−) (−,−)

)
(55)

where ’−−’ means again a larger contribution. Gener-
ally, it can be seen that, as by far the weakest organism,
flight A, selfishly shifts large chunks of fitness from the
genes 2− 4 to gene 1, where the balanced and the selfish
part of Eq. (31) work in the same direction. With this
flow of gene fitness it can be seen in Fig. 6 that the or-
ganism flight A becomes fitter at the expense of other
organisms during the simulation. In the end, the flight
F benefits from this dynamics most and wins this evolu-
tionary game.

C. Fully self-consistent evolutionary dynamics

In the example above, we predefined the evolutionary
strategies and investigated the dynamics of the gene and
organism fitness. What happens when we let the data
system itself choose the appropriate strategies? In this
section, we want to do this last step to a complete ab
initio approach and demonstrate the effects on our two
introduced examples.

Let us first define which set of gene strategies and or-
ganism strategies we include in our self-consistent cycle

Sg = {dom, alt}, (56)

Sω = {bal, sel}. (57)

These strategies yield individual delta contributions ac-
cording to Eq. (21+26+22+31). The principle idea be-
hind our self-consistent approach is that we measure the
absolute fitness effect of a strategy with

∆̄g
s = m · mean

1≤i,j≤n,m
|∆g:s

ij | for s ∈ Sg, (58)

∆̄ω
s = mean

1≤i≤n

m∑
j=1

|∆ω:s
ij |γj for s ∈ Sω. (59)

To iteratively determine the mixing factors α from
Eq.(33+34) we now use the replicator equations anal-
ogous to Eq.(19+20)

α̃(k+1)
s = α(k)

s

(
1 + ∆̄(k)

s

)
, (60)

α(k+1)
s =

α̃
(k+1)
s∑

t∈S α̃
(k+1)
t

, (61)

FIG. 7. Fully self-consistent simulation comparing the gene
fitness of the simple example Tab. I and the real-world exam-
ple Tab. III .

FIG. 8. Fully self-consistent simulation showing the dynamics
of the mixing factors (compare also to Fig.7).

which can be applied for ∆̄
g,(k)
s , ∆̄

ω(k)
s .

In Fig. 7, we show the dynamics of the gene fitness for
fully self-consistent simulations of the small example and
the real-world example, where we adapt the α values dy-
namically, according to Eq.(58-61)). As a starting value,

we set α
(0)
s = 0.5 for all strategies. Not surprisingly, con-

vergence takes longer as in the cases with fixed strategies
as both the mixing factors α and the gene fitness values
γ have to settle to an equilibrium.
Let us compare the values of ∆̄g

s after one iteration for
the small example from Tab. I

∆̄
g,(1)
dom = 0.041, (62)

∆̄
g,(1)
alt = 0.037 (63)

where it can be seen that GS Dominant has a stronger



12

average effect than GS Altruistic and in the end represses
the alternative strategy completely as can be seen in
Fig. 8.

Investigating ∆̄ω
s for the two strategies

∆̄
ω,(1)
bal = 0.062, (64)

∆̄
ω,(1)
sel = 0.071, (65)

∆̄
ω,(2)
bal = 0.065, (66)

∆̄
ω,(2)
sel = 0.053, (67)

we see that the initial tendency to OS Selfish is turned
around for the second iteration. This behavior is caused
by the change in the contribution of flight C

∆
ω,(1)
sel,3j = [0.0640,−0.0407,−0.0233], (68)

∆
ω,(2)
sel,3j = [0.0143,−0.0086,−0.0057]. (69)

Recalling the part of Eq. (51) for flight C

Osel
3j =

(
(+,+) (−,+) (−,+)

)
, (70)

it follows that since flight C loses fitness wrt. both flights
A and C, respectively, the most expensive flight also loses
much potential to effect the overall gene fitness values
dramatically. In particular flight B, which is at equal fit-
ness in the first iteration, starts dominating flight C and
starts selfishly reducing its contributions.

After 500 iterations, the GS Dominant has completely
replaced GS Altruistic resulting in the gene for ’price’
losing ground to ’stops’. This has the side effect that the
contributions of flight C to OS Selfish can partly recover

∆
ω,(500)
sel,3j = [0.040,−0.022,−0.017] (71)

as the competitive advantage of the flight A and B in
terms of a lower price slowly loses its effect. As ESE is
reached there is a mixed equilibrium of 87% OS Balanced
and 13% OS Selfish as can be seen in Fig. 8.

For the real-world example the results are different:
whereas this time the strategy OS Balanced completely
takes over with 100% dominance, the strategies GS Altru-
istic and GS Dominant stabilize at a ratio of 89%/11%,
respectively.

Why does GS Altruistic become the predominant
strategy for the real-world example Tab. III, but not for
the simple example Tab. I? Recalling Eq. (26), that, since
GS Altruistic contains GS Dominant, it will yield larger

contributions if |∆̃g:alt
ij |/γj > 1. Only two contributions

fulfill this condition for the small example with the max-

imum |∆̃g:alt
23 |/γ3 = 1.14 from Eq. (25)

4

mγ3
{κg

21γ1[ϕ1(a21)− ϕ3(a23] + κg
23γ2[ϕ2(a22)− ϕ3(a23]} .

(72)

Hence, the maximum value for GS Altruistic is only 14%
larger than GS Dominant. The main reason for this is

that the genes relatives for flight B are not really strong
with ϕ1(a21) = 0.6 and ϕ1(a22) = 0.5.

The case is different for the real-world exam-
ple III: here, the maximum factor for GS Altruistic is

|∆̃g:alt
10,1 |/γ1 = 2.05, i.e. twice as large as GS Dominant.

This stems mainly from the two additional gene relatives
’luggage’ and ’stops’ which have the maximum value for
flight J and therefore max-out the term for the transfer
of resources ϕ2(a10,4)− ϕ3(a10,1.

D. Heuristic Observations

Let us summarize the conclusions from the presented
numerical experiments. To obtain the optimal solution
and measure the relevance of data features, evolution-
ary strategies test various data properties. Every strat-
egy acts like a test kernel comparing the principle data
features of a given data package:

• GS Dominant mainly tests for symmetry and indi-
vidual gene variant fitness. It follows from Eq. (21)
that if the majority of gene fitness values are above
or below 0.5, it will have the strongest effect on the
dynamics of the simulation. On its own, GS Dom-
inant would accumulate all gene fitness at the in
this sense strongest gene.

• GS Altruistic Eq. (26) measures how similar or
related different genes are. It will prevail over
GS Dominant if there are enough related genes
that have multiple statistical outliers which behave
against a given similarity between data features.

• OS Balanced Eq. (22) measures the symmetry of
individual data sets. If the fitness of a data set is
distributed very unevenly, it will yield larger con-
tributions. Thus, OS Balanced also acts against fit-
ness accumulation coming from the gene strategies.
It is thus a major reason for stable states that allow
for the non-trivial data analysis.

• OS Selfish Eq. (31) mainly tests how similar or re-
lated different organisms or data sets are. Note that
if data sets tend to be rather similar, also their fit-
ness values will be close to each other. Hence, OS
Selfish can act as a tiebreaker in simulations that
are otherwise to close to call.

• With this set of four evolutionary strategies, there
was a non-trivial ESE in all examples that were
investigated. In particular, it seems plausible that
OS Balanced (and the corresponding term in OS
Selfish) will prevent a complete accumulation of the
entire gene fitness to one single gene.



13

E. Other Applications

In the introduced decision examples, we investigated
problems in terms of the dynamics of gene fitness and
organism fitness, respectively. The same approach can
be easily generalized for a large set of other fields. For
example, Genetic AI can be used in search engines, rec-
ommendation and prediction. We leave the analysis and
comparison to existing methods for future work however.

VII. CONCLUSION

In this paper, we have introduced Genetic AI, a new
method for optimization and data analysis from first
principles. Applying Genetic AI to two simple decision
problems, we have shown that it is a versatile tool to
understand a system described by data.

In the end, a question persists: why does it work? To
understand this, it helps to completely turn to the evo-
lutionary picture: assume we have a closed evolutionary
system of genes and organisms with fixed preconditions.
Lets further assume that there are no gene mutations,
cross-overs or other changes to the genes and organisms
of the population. Then, the competition of the genes and
organisms of the system turns into a ’game’ of how good
the given properties perform in the chosen environment.
On the one hand, this predefined environment ’tests’ our
fixed genes and organisms (in Genetic AI, the strate-
gies GS+OS mimic this environment to ’test’ the data).
On the other hand, the performance of genes and organ-
isms is governed by universal mechanics of gene/organism
correlations, similarities and symmetries. Note that only
some of these mechanics are based on statistical dynam-
ics, as single genes or organisms might change the out-
come of the evolutionary game completely.

Quite analogously to evolutionary systems, data prob-
lems depend on correlations, similarities and symmetries

between one part of the data to the others. Hence, we can
expect evolutionary simulations to describe data systems,
if we include all necessary evolutionary strategies to cover
their fundamental behavior.

VIII. OUTLOOK

In ML and EA, it took around 30 years after their
first introduction for wide-spread acceptance and appli-
cations. Hence, in the next years, we want to expand on
the original formalism described in this paper.
One major objective is a detailed comparison of Ge-

netic AI with different algorithms from the field of
EMO [4]. Furthermore, a conceptual analysis of the re-
lationship to EGT [8] would provide additional insights
on the potential of Genetic AI to analyze universal data
models. Creating hybrid systems, e.g. in connection to
general Neural Networks or LLMs, might provide a pow-
erful strategy to use the strengths of both technologies.
In terms of applications, it would be very useful to

investigate larger, more complex and also more diverse
examples to better pinpoint weaknesses and advantages
of the method. To that end, we aim to create a ’net-
work’ of interconnected evolutionary simulations. Quite
similar to organs in a human body, these individual sim-
ulations could independently investigate certain prereq-
uisite questions and ’channel’ their analysis into one final
simulation, the ’brain’.

ACKNOWLEDGMENTS

Thanks to Richard Allmendinger and Karsten Held for
useful discussions and input. Thanks also Aris Daniilidis
and his group for helpful discussions and inspirations.
Also thanks to Martin Bär for proofreading, suggestions
and references.

[1] X.-S. Yang, Optimization algorithms (1970) pp. 13–31.
[2] R. Choi, A. Coyner, J. Kalpathy-Cramer, M. Chiang, and

J. Campbell, Introduction to machine learning, neural
networks, and deep learning, Translational vision science
& technology 9, 14 (2020).

[3] K. Deb, Multi-Objective Optimization Using Evolution-
ary Algorithms (John Wiley & Sons, Inc., USA, 2001).

[4] T. Friedrich, T. Kroeger, and F. Neumann, Weighted
preferences in evolutionary multi-objective optimization,
Int. J. Mach. Learn. Cybern. 4, 139 (2013).

[5] I. H. Sarker, Ai-based modeling: Techniques, applications
and research issues towards automation, intelligent and
smart systems, SN Comput. Sci. 3, 10.1007/s42979-022-
01043-x (2022).

[6] Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, C. Xue, B. Wu,
Z. Li, Q. Gu, Y. J. Lee, Y. Yan, B. Chen, G. Sun, and

K. Keutzer, Llm inference unveiled: Survey and roofline
model insights, ArXiv abs/2402.16363 (2024).

[7] We are using the expressions ’ab initio’ and ’from first
principles’ in this paper. The argumentation follows the-
ories in solid state physics which aim to compute proper-
ties of materials without external parameters [21, 23, 24].
Quite similar, in Genetic AI, we aim to gain understand-
ing of data problems without any external parameters.

[8] J. Maynard Smith and G. R. Price, The logic of animal
conflict, Nature 246, 15 (1973).

[9] J. Hofbauer and K. Sigmund, Evolutionary game dynam-
ics, Bulletin of the American Mathematical Society 40,
479 (2011).

[10] K. De Jong, D. Fogel, and H.-P. Schwefel, A history of
evolutionary computation (1997) pp. A2.3:1–12.

https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1007/S13042-012-0083-Y
https://doi.org/10.1007/s42979-022-01043-x
https://doi.org/10.1007/s42979-022-01043-x
https://doi.org/10.1038/246015a0


14

[11] E. Galván and P. Mooney, Neuroevolution in deep neu-
ral networks: Current trends and future challenges, IEEE
Transactions on Artificial Intelligence 2, 476 (2021).

[12] J. Maynard Smith, The theory of games and the evolu-
tion of animal conflicts, Journal of Theoretical Biology
47, 209 (1974).

[13] J. M. Smith, Will a sexual population evolve to
an ess?, The American Naturalist 117, 1015 (1981),
https://doi.org/10.1086/283788.

[14] R. Axelrod, The Evolution of Cooperation (Basic, New
York, 1984).

[15] U. Berger, Fictitious play in 2 × n games, Journal of
Economic Theory 120, 139 (2005).

[16] R. Dawkins, The Selfish Gene: 30Th Anniversary edition
(Oxford University Press, London, England, 2006).

[17] Note that the approximation of taking a linear organism
fitness shows similarities to applying the local density
approximation (LDA) in physical and chemical simula-
tions [23, 24]). In LDA, one neglects (some) correlations
by replacing complex electronic orbitals by a single func-
tion, the electronic density. In Genetic AI, by taking a
linear fitness, we neglect non-local inter-organism corre-
lations to the organism fitness.

[18] One usually wants a non-trivial ESE, where not all gene
fitness is transferred to a single gene.

[19] Note that the quadratic dependence to the gene fitness
has fascinating analogies to formulas of electric charge
interaction and methods to describe charge densities.

[20] In the case of equal organism fitness values, an alternative

choice is ρ = max1≤t≤n r
(0)
t .

[21] W. Kohn and L. J. Sham, Self-consistent equations in-
cluding exchange and correlation effects, Phys. Rev. 140,
A1133 (1965).

[22] Note that the results for i = 0 in Fig. 3, represents an
example for a weighted approach as e.g. in some variants
EMO[4], but with equal weights for all objectives. In con-
trast to EMO, where optimal solutions are investigated,
we focus on the evolutionary dynamics of the weights,
the gene fitness values γ.

[23] P. Hohenberg andW. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[24] K. Held, I. A. Nekrasov, N. Blümer, V. I. Anisimov, and
D. Vollhardt, Realistic modeling of strongly correlated
electron systems: an introduction to the lda+dmft ap-
proach, International Journal of Modern Physics B 15,
2611 (2001).

https://doi.org/10.1109/TAI.2021.3067574
https://doi.org/10.1109/TAI.2021.3067574
https://doi.org/https://doi.org/10.1016/0022-5193(74)90110-6
https://doi.org/https://doi.org/10.1016/0022-5193(74)90110-6
https://doi.org/10.1086/283788
https://arxiv.org/abs/https://doi.org/10.1086/283788
https://doi.org/10.1016/j.jet.2004.02.003
https://doi.org/10.1016/j.jet.2004.02.003
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1142/S0217979201006495
https://doi.org/10.1142/S0217979201006495

	Genetic AI: Evolutionary Games for ab initio dynamic Multi-Objective Optimization
	Abstract
	Introduction
	Background
	Formalism
	Genes and Organisms
	Fitness functions & Population

	Evolutionary Simulation
	Replicator Equations

	Evolutionary Strategies
	Gene Strategy: Dominant
	Organism Strategy: Balanced
	Gene Strategy: Altruistic
	Organism Strategy: Selfish
	Choice of Strategies
	Ab initio approach
	Predefined choice
	Determine the mixing through training


	Numerical Experiments
	Simple Example
	Real-World Example
	Fully self-consistent evolutionary dynamics
	Heuristic Observations
	Other Applications

	Conclusion
	Outlook
	Acknowledgments
	References


