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Genetic AI – applying evolutionary strategies  
to create a new type of artificial intelligence

For a long time, we were not sure if we should 
present Genetic AI to a broader audience. In the 
end, we decided that the gains of other teams 
pushing the technology forward far outweigh the 
risk of losing control over it.

A warning upfront: Genetic AI is complex. We have 
taken the freedom to describe the foundations and 
framework in detail - keep on reading, it is worth it! 

We have taken our inspiration from genetic algorithms and 
evolutionary game theory, but then proceeded in a new di-
rection: with an evolutionary approach, can we reach a new 
understanding of the nature of universal data?

1  
Summary

To that end, Genetic AI employs the concept of genes and 
organisms interacting with each other. The interplay be-
tween genes (data features) and organisms (data sets) 
stands in the center of the technology. By controlling the 
resulting dynamics with specific evolutionary strategies, we 
manage to create a versatile framework for applications in 
data analysis and AI.

What makes Genetic AI unique as a technology in artificial 
intelligence? Employing very fast evolutionary simulations 
allows us to train AI models in real-time for the first time. 
This, together with the possibility to decentralize the training 
process, opens up new fields of technical opportunities for 
the taking. 



Before we dive into the realms of Genetic AI, let us 
first take a step back and reflect about what kind 
of AI the world “needs”. The past decade have been 
driven by technological innovations in AI, but 
somehow people only thought about what is good 
or bad about it after it was developed or released.

With recent innovations in Large Language Models (LLM) 
we again missed the chance to actively state what kind of 
AI has a positive impact on our lives and society as a whole. 
Before Genetic AI becomes a “polished” technology, let us 
not redo this mistake and define must-have points

Stability2: stabilizing unstable AI solutions is currently done 
using colossal data and energy resources. We have to find a 
simpler way to obtain a stable answer from an AI. 
 
Decentral Data and Model: central control of data and AI 
model creates distrust among users. A decentralized ap-
proach has multiple advantages in terms of societal value. 
It is clear that not all applications allow for complete decen-
tralization - still, we have to move as close as possible.

2  
Introduction 
or how should a new artificial intelligence technology look like?

2 �What we define as stability is also often called “robustness”, especially in the sense 
of “Trustworthy AI”. We mean by “stability” in particular two properties (i) the 
result of the AI does not change by small changes in data and model properties, 
and (ii) the result makes sense, or at least one understands why the AI fails (no 
unexplained, surprising “hallucination”).

3 �This unifies the other two properties of “Trustworthy AI” apart from robustness: 
lawfulness and ethical behavior.

Follow-the-rules3: AI has to follow given rules of law and 
ethics. There can be no question about it.

Transparent: The black-box behavior of many AI solutions 
makes it difficult to trust the results. Hidden agendas dom-
inate corporate AI and it is difficult to see through the inter-
nal processes. Hence, AI has to transparently explain what it 
does and why.

Non-conformist: Many wide-spread AI technologies have 
the tendency to overrate average behavior as “good”. This 
leads to streamlining in markets and opinions, where we 
would actually need diverse solutions for the world’s problems.

Low Resources: The current energy demand of AI solutions 
stands in no relation to the created value. We need AI tech-
nology that uses as little resources as possible. 

At first glimpse it seems unrealistic  
or even impossible to fulfill all these  
requirements in one single technology.  
As we will see, it is not only indeed  
possible, but Genetic AI also opens up 
new ways to follow-up technologies. 

In order to approach the technical  
details of Genetic AI, we first have to  
introduce three important prerequisites: 
multi-dimensional sorting,  
genetic algorithms and evolutionary 
game theory. 
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Sorting things is tedious business. Everybody who 
has sorted cards or other comparable items knows: 
it involves a lot of pairwise comparisons. Hence, it 
does not come as a surprise that sorting was one 
of the first things computers were much faster than 
humans some 70 years ago.

When we think of sorting, we usually think of one-dimensional 
sorting, i.e. the sorting of things according to one single 
parameter. Getting the cheapest flight from A to B requires 
sorting the prices from lowest to highest. Naturally, there is 
only one correct sorting order4.
What happens if we want to sort according to multiple pa-
rameters? Imagine you do not want the cheapest flight, but 
also minimal flight-time and intermediate stops (see also 
Getting the right flight). In contrast to one-dimensional sort-
ing, multi-dimensional sorting (MDS) allows for multiple 
“right” solutions. In the end it depends on the situation and 
application what we would consider the correct result. In 
more complex systems defining a single, universally correct 
solution usually does not make sense at all.

3   
An introduction to multi-dimensional sorting

Getting the right flight

As a simple example, let us define a very small multi-dimen-
sional sorting problem – namely finding the right flight out 
of 3 options with 3 parameters each (note that we left out 
reasons of sustainability for brevity here):

Price
(Euro)

Time-of-
transfer (h) Stops

Flight A 300 10 2

Flight B 600 5 2

Flight C 1500 4 1

In algorithms as in life, everything comes at a price. Mathe-
matically speaking, there is “no free lunch” when it comes 
to which algorithms is good for which applications5. In this 
sense, it is a big advantage for MDS algorithms that they do 
not care about the “space” between their ordered items (i.e. 
how far A is before B is not important, only the order counts). 
Consequently, MDS algorithms can “focus” their complexity 
on getting the order right, while other algorithms may be 
distracted, calculating exact values of probabilities. In terms 
of the NFL theorem, MDS algorithms are therefore the best 
choice for MDS problems.
One might now argue that MDS problems are rare. Ironically, 
exactly the opposite is true: almost all problems containing 
any decision are MDS problems. Where do humans or ma-
chines have something to decide? Apart from consumer 
needs (which essentially dominate our everyday life), we also 
find decisions everywhere else: e.g. politics, economics and 
automation. Hence, MDS problems actually dominate anal-
ysis and prediction for structured data – let us now find a 
universal way to solve them.

4 �That is why the different one-dimensional sorting algorithms are mainly benchmar-
ked according to their performance. See [1] for a short introduction to the different 
sorting algorithms.

5 Compare also [2] for a general introduction into the “no free lunch” (NFL) theorem.

So: which offer is best? That depends on your budget and 
available time. Thus, any MDS algorithm has to take into 
account specific preferences to calculate a possible solution. 
Note that it might be unclear what a “right” solution is, but 
it is usually pretty clear what a false solution is (e.g. recom-
mending a budget-driven person the most expensive flight). 
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Evolution is a serious but wonderful business [3]. Though 
the image that evolution directly converges to a clear “win-
ning” organism is not valid, the idea that evolution poses a 
natural optimization for life forms, adapting to their habitat 
is in a sense universal. One might think: why not apply the 
philosophy of evolutionary processes to general optimiza-
tion problems? Enter evolutionary algorithms (EA).
Live forms have reached every tiny corner of our planet. 
Consequently, EAs are on the one hand very versatile 6. On 
the other hand, similar to the highly specialized species of a 
habitat, EAs tend to be rather specialized to a particular 
optimization problem. We now want to turn our attention to 
a special form of EA: genetic algorithms (GA).
Similar to EAs, genetic algorithms leverage the power of evo-
lutionary contest to iteratively improve possible solutions to 
a problem7. One of the first steps in this process is the refor-
mulation of the problem into genetic form. To that end, a 
possible solution is encoded into a chain of numbers. Creating 
and supervising a genetic model is often not straightforward 
– still in many optimization problems it provides an elegant 
way to close-in on the optimal solution.

4   
An introduction to  
genetic and evolutionary 
algorithms

Differences of sorting  
algorithms to optimization  
algorithms

In terms of algorithm taxonomy, sorting and optimiza-
tion are quite different. In optimization, you usually 
start with an initial solution of low quality and want to 
iteratively improve the solution. Usually you change 
the solution over time aiming to create a better quality. 
How quickly one obtains better solutions and how 
good the final result is depends on the choice of opti-
mization algorithm and the problem you like to solve.
On the contrary, sorting algorithms have a fixed set of 
solutions and want to quickly bring them into the 
“right” order. Hence, no new solutions are created in 
the process. Analyzing given solutions (by sorting) is 
neither better nor worse than generating new ones (by 
optimization) – it is simply a completely different prob-
lem to be solved.

So, what is the point? An important take-home mes-
sage is that one has to take care to select the right 
type of algorithm for the right kind of problem: op-
timization algorithms are not good in sorting, while 
sorting algorithms are not good in optimization.8

6 See also [4] for a good overview of evolutionary algorithms.
7 	See also [5] for a discussion on methods in genetic algorithms.
8 �One can however combine the merits of both worlds to a common “super-algo-

rithm”. One way of doing this is to take the generative magic from the optimizati-
on algorithm to create a set of new solutions every iteration. The sorting algorithm 
takes these new solutions and sorts them into order. The front-runner solutions 
are then handed on to the optimization algorithm again to create solutions for the 
next iteration.

One of the most eponymous steps in GAs is how new solu-
tions are created. Essentially, one mixes (“cross-over”) and/
or manipulates (“mutates”) parts of one solution with another. 
These parts or units cannot be chosen at random, since not 
any “bred” solution would be valid. Hence, these parts can 
be interpreted as genes in genetic optimization.
To measure the quality of a solution s, genetic algorithms 
employ a so-called fitness function F(s). The fitness F(s) can 
be used to compare solutions amongst each other and sort 
them. It is important to mention that the fitness function F(s) 
is global for a system and usually stays the same for the entire 
optimization. Note also that computing F(s) of all solutions 

of a generation can take some time, depending on the com-
plexity of the system.
In our route to Genetic AI, GAs pose an important milestone: 
to evaluate solutions according to their fitness and iteratively 
“improve” a population. However, in the data-driven sorting 
problems that we aim for, we usually have given data sets 
that we do not want to change.
Hence, we need a formalism describing how a system of 
fixed solutions interacts with each other. This is where evolu-
tionary game theory comes into play.

4.1  

Genetic recombination and the Fitness Function



It was 2001, when the movie “A Beautiful Mind” spotlighted 
game theory for a non-mathematical audience. In the movie, 
the real story of John Forbes Nash mesmerized people all 
over the world. Interestingly, Nash is one of the few mathe-
maticians obtaining a Nobel Prize (in economic science).

Aside from “A Beautiful Mind”, it is somewhat ironic that game 
theory is one of the most underestimated fields of mathemat-
ics. The reason for this lies in the fact that the examples and 
investigated systems look simple at first glance 9. However, on 
closer examination, these “simple” systems hold rich dynam-
ics which often take years to understand.

5   
An introduction to evolutionary game theory

9   �Game theory investigates the dynamics of rule- and round-based “games”.  
In game theory a “game” can be anything from social interactions to the politics 
between nuclear powers. One of the most popular games analyzed is the  
“Prisoner dilemma”: 2 players (P1, P2) can independently decide to cooperate (C) 
or defect (D). In this case there are 4 possible outcomes of a game round  
(P1=C/P2=C; P1=C/P2=D; P1=D/P2=C; P1=D/P2=D). Each result has different 
rewards/punishments. Playing the game multiple rounds has interesting  
implications in terms of social behavior.

10 The value V/2-C/2 is a statistical result derived from the 50/50-win/lose-rule

In the 1970s, and with game theory in mind, John Maynard 
Smith and George R. Price were asking themselves

Why are rivaling male animals not killing each other 
more frequently while fighting against each other?

Taking out opponents for reproduction appears to be a viable 
strategy in a naive game of “survival of the fittest”. Somehow 
nature thinks otherwise and usually lets a more balanced 
strategy between aggression and defensive behavior prevail 
(though, not always: see [6]).

Hawks VS Doves

Assume you have a population with two principle survival 
strategies: (H) hawks type: members of this group will fight 
every opponent viciously for any resource, (D) dove type: 
members of this group will give in on aggression and other-
wise try to cooperate with any opponent to share any re-
source. For every round of the game one selects two 
members of the population at random and lets them interact 
where the resource V is the prize. If two hawks meet each 
other one will win half of the time while losing in the other 
cases (“losing” meaning they have to “pay” the price C in 
resources). 

One can visualize the rules of the game as follows

Payoff
Matrix

meets
hawk

meets
dove 

If hawk V/2-C/210 V

If dove 0 V/2

Every game round in evolutionary game theory has two 
principle phases

1. Game rules phase: Choosing two members of the popula-
tion at random and applying the payoff matrix to their inter-
action. Note that the higher the dove-population the lower 
the probability of a hawk meeting another hawk. Hence, 
ironically, the fewer hawks the more effective hawk-like be-
havior is.

2. Replicator rules phase: The more resources a strategy group 
can gather, the more numerous they will be in the next game 
round. This is mathematically described by replicator equations 
like ΔP = P (F(P)- Mean(F(P))) where P can either be H or D in 
our example and F(P) is the fitness of that population group 
(how many resources they could accumulate). It is an important 
aspect of evolutionary game theory that individuals cannot 
change their strategy – they are born and die with it.

Running these two phases iteratively one can observe how a 
model system develops with time. Will hawks or doves win in 
the long run? This essentially depends on the relation of hawk-
hawk-penalty C to the obtained resource V: an evolutionary 
stable strategy (ESS) is a hawk population of V/C. This explains 
that if the penalty C is high (getting killed) why in male-male 
animal fights the opponents do not fight to the death to win. 
Too risky strategies for reproduction simply were evolutionary 
not stable in the sense that a more defensive strategy prevailed.

Adding evolutionary concepts to game 
theory, evolutionary game theory [7,8] 
managed to explain many at the first 
glance surprising strategies in animal  
behavior, like altruism and eusocial animal 
colonies (see also Hawks VS Doves).
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5.1  

The gene perspective

One major insight brought forward is that a single 
animal organism does not act on its individual sur-
vival, but it is the genes that pass on successful 
survival and reproduction strategies that are actu-
ally “playing the game”. That evolution can be seen 
more as a contest of gene fitness changes the way 
researchers could analyze the long-term behavior 
of evolutionary systems [9].

Imagine there would be a way to 
let all contestants, organisms and 
genes interact with all others in 
just one single step. This approach 
paved the way for Genetic AI.
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Of course, animal populations are not the only thing that 
one can put into a model of evolutionary game theory. In 
fact, the theory has major implications in understanding 
human behavior and societies. For data analysis and sorting 
however, the original formalism lacks some flexibility and 
performance:

• �The splitting between game phase and replication 
phase makes the models rather specialized

• �The pairwise interaction between members of the 
population is relatively slow.



Is it data?  
Is it evolution?
In this paper we juggle with many terms from data 
analytics and evolution. Let us explain what is 
meant with the used terms and their relation with 
each other:

The data picture

Data model: data describe things. A data model is a “shelf 
system” system to get structure into chaos. In this paper, we 
only treat structured data, i.e. data that you could actually 
split and distribute into the right “shelf”. Genetic AI can be 
applied to any type of structured data. For the sake of pres-
entation, we will restrict ourselves to data models that can 
be written in the form of Excel tables or matrices here. Note 
that this does not mean that the data have to be of numerical 
type, but can also be a list of labels.
Data set: a data set is a single row in our data model. Data 
sets do not have to be complete, i.e. the matrix can contain 
blank spaces.
Data feature: a data feature is a single column in our data 
model. Hence, it describes the same attribute in all data sets.
Data element: a data element is a single cell in our Excel 
table. Thus, it describes a certain data feature for a certain 
data set. It is the smallest unit of information in the system.

The evolutionary picture

Evolutionary system: an important quantity of the systems 
we investigate, is that they are self-sufficient, i.e. it is as-
sumed that all necessary information is covered by our evo-
lutionary model.
Organism: an organism or individual contains a set of gene 
variants. Organisms will behave as one entity, making deci-
sions based on their strategy. All individuals together rep-
resent the population.
Gene: genes are grouped features of the organism. They 
describe the same type of attributes in organisms and are 
therefore logically connected to each other. A biological, 
greatly simplified example is the gene storing the informa-
tion of the size of an organism.
Gene variant: organisms contain a certain variant of a gene. 
One can think of the variant as to how a gene “acts” for the 
organism, e.g. how big an organism will be.
Fitness function: organisms and genes will be evaluated in 
terms of fitness. The choice of fitness function depends on 
multiple factors and can be completely different for two 
systems and even genes.
Strategy: In this paper, strategies mean how genes and or-
ganisms interact with each other. Genes and organisms can 
follow completely diverse strategies for “success”. 

Analogies between data and 
evolutionary picture

Evolutionary System <> Data model: for Genetic AI, a data 
model is an evolutionary system with certain organisms and 
genes. The purpose of the prepared system is to be analyzed 
by evolutionary simulation.
Organism <> data set: data sets “behave” like individual 
organisms according to their strategy.

Gene <> Data feature: in Genetic AI, we treat data features 
as individual genes competing according to their strategy.
Gene variant <> Data element: consequently, data element 
entries are interpreted as gene variants of an organism. Like 
data elements, gene variants are the smallest unit in the 
evolutionary system.
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From a broader perspective, evolution is the most 
successful and universal process of problem solving 
available for mankind. Any process of chemistry, 
structural optimization, transport, distribution of 
resources has already been solved by nature at 
some point.

Unfortunately, evolution is slow in terms of human life ex-
pectancy – nature will find a way, but you do not know how 
long it will take. Hence, we would like to keep the universal-
ity, but speed up the process to find the right solution.

6.1  

Data organisms and data genes

Let us remember what an “organism” in our evolutionary 
data framework is: a data set (organism) contains a set of 
data element (gene variants), e.g. a flight (organism A) costs 
300 euros (gene variant a), takes 10 hours (gene variant b) 
and has two stops (gene variant c):

6   
Introduction to Genetic AI

Evolutionary Data Model

Fig.1: Organism and genes interpretation for 
data

Our goal is to evaluate and sort the fitness of all organisms 
and genes in the system. The fitter an organism (data set) is 
the higher its rank in the final sorting order (see also Box Is 
it data? Is it evolution?). To get ranked, organisms follow a 
strategy. The choice of the right organism strategy (OS) 
depends on the system, but also on the application and/or 
personalization (see also further below).
In Genetic AI, the second central quantity besides organisms 
are genes: they represent a  data feature of the system. Like 
organisms, genes usually share the same gene strategy 11(GS) 
in the evolutionary model. Note that this is one major differ-
ence to evolutionary game theory where you usually have 
multiple competing gene strategies.

data feature a

organism A

organism B

organism C

gene a gene b gene c

data feature b data feature c

data set A element (A,a)e b) element (Aelement (A ,c)

data set B element (B,a)e b) element (Belement (B ,c)

data set C element (C,a)e b) element element (C(C ,c)

11 �Usually you want that all organisms follow the same strategy, such that you can 
compare the data sets of the system with each other.

,

,

,

Let us summarize the main drivers behind Genetic AI, their 
drawbacks and how we intend to solve them:

Genetic Algorithms: encoding a universal problem into ge-
netic information brought us a big step forward. Unfortu-
nately, the encoding for an optimization problem is usually 
very specific. By “converting” into a sorting problem of fixed 
structured data, we aim to shift the encoding problem to a 
local genetic fitness function. This, at the same time, also 
improves performance issues with computing a global fit-
ness function.

Evolutionary Game Theory: a big advantage of this ap-
proach is the universality of the game dynamics according 
to the choice of strategy. Unfortunately, the split between 
game rules and replicator equations together with the pair-
wise resolution of game rounds leaves room for improve-
ment for our needs. We aim to introduce global strategies 
for genes and organisms such that we can compute the in-
dividual fitness of everything all at once.

With these conceptual 
prerequisites and 
ideas, we can now  
tackle our main target: 
a sorting algorithm for 
all types of data.
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6.2  

Organisms VS Genes

With OS and GS in place, we can start our evolutionary 
“game”: in every game round (or iteration), genes compete 
against each other and against all organisms. They do this 
according to their gene strategy. At the same time organisms 
compete against each other and against all genes – again 
according to their common organism strategy. 
What are the game rules? Every organism and gene has to 
“act” once per round. Action usually means changing the 
gene fitness in some way:

6.4  

Organisms and Data Strategies

In Genetic AI a lot depends on choosing the right combina-
tion of OS+GS. In a nutshell, one often wants both sides, 
organisms and genes, “pulling” in different directions:

Evolutionary Game Round

Fig. 2: Organisms and genes change the gene 
fitness

After all organisms and genes have acted, one obtains a new 
fitness for all genes (data features) and organisms (data 
sets). Consequently, one can sort them and get the desired 
results for this iteration. Note that with Genetic AI you can 
sort both, data features and data sets, in one single step.

12 �Note that ESS usually stands for “Evolutionarily Stable Strategy” in evolutionary 
game theory. Since strategies are usually fixed anyway, this concept does not 
make much sense in Genetic AI. Here, a stable state for the fitness values is often 
desirable. Hence, the last S in ESS stands for state in the following.

Evolutionary Balance

Fig. 3: Organisms and genes “pull” on the gene fitness according to their strategy 
(different arrow lengths represent the strength of the “pull”).

So how do successful strategies look like? In the following, 
we give a simple example of a useful combination:
Gene strategy – GS Dominance: in this strategy, gene vari-
ants test if they are better then 50% in their gene. If yes, they 
increase gene fitness depending on how much better they 
are. For gene variants below 50% they consequently reduce 
the gene fitness accordingly.
Organisms strategy – OS Balance: in this strategy, organ-
isms give genes a fitness penalty, if they tend to dominate 
their fitness. Note that the more genes try to become more 
dominant, the more an organism will “punish” them. Hence, 
OS Balance somewhat works against GS Dominance.

6.3  

Multiple Game Rounds

After one iteration, one obtains new fitness results for or-
ganisms and genes. Depending on the application, one can 
repeat the game with these new values. If an evolutionary 
stable state (ESS 12) can be obtained, depends on the OS, GS 
and the given data sets. Note that some combinations of 
OS+GS always reach ESS.
Since we want to save time and resources, we can stop our 
evolutionary simulation when the organism fitness F(ω) and/
or gene fitness F(g) is not changing too much over different 
iterations. There are also tricks to “preview” the final fitness 
values with just one iteration (see below).

A main part of research in Genetic AI  
comes down to investigating new,  

compatible strategies. For example,  
genes and organisms can act fair, unfair, 

collaborative, egoistic, altruistic – the 
optimal choice always depends  

on the application.

organism A

organism B

organism C

gene a

gene b

gene c

gene fitness a

gene fitness b

gene fitness c

organism A gene a

organism C gene c

gene b organism B

gene fitness

increasedecrease



Getting the right flight, revisited
Let us revisit our example of three flights once again. What is the answer of Genetic AI (taking GS Dominance and OS Bal-
ance)? As a first try, let us assume that we do not really know anything about our system and which data feature might be 
more important for the interested passenger-to-be. We set the initial gene fitness of price, time and stops to 33% each. We 
start our evolutionary simulation and get the following result after 20 iterations.

Note that for this example and setup, Genetic AI thinks that the number of stops is the most relevant data feature of a flight 
(at 37,5%) and recommends taking the third flight (the most expensive). Price comes out second at 34% importance and time 
finishes last at 28,5% (see also Appendix for a more detailed analysis of these results).. Note that the system shows a nice be-
havior towards an ESS. However, the decision between second and third flight happens already after one iteration, where the 
green line is above the orange and stays there. Hence, one could essentially stop the simulation at this point. 
A more budget-driven user might intervene and say: “Wait, I should take the most expensive flight?”. We can include this 
kind of consideration by doubling the initial gene fitness for price and reduce the fitness for the two other genes accord-
ingly. Again, we make 20 iterations to obtain the following result.

First, note that the ESS is the same, independently of the starting values for the chosen strategies and the system needs 
all 20 iterations to stabilize. However, in Genetic AI, we can stop the simulation at any intermediate step. If we stopped at 
4 iterations, the answer to the right flight would be “Take the second flight”, since it offers the best balance between price 
and time. It is important to mention that the point of stopping is not a random choice for Genetic AI. Unequal starting values for 
gene fitness can be seen as a perturbation of the system. The way that the evolutionary system reacts to this perturbation holds 
information in itself. Whether one lets the system relax to the ESS depends on the application and performance considerations. 
Choosing the right time to stop the simulation can also be trained controlling the quality and plausibility of results.
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We have now introduced the basics of Genetic AI. As an 
immediate follow-up question one might ask: how useful is 
it? In the most part this boils down to how flexible it can be 
applied to different (sorting) problems (for the quality of 
results see below).
Customizing your Genetic AI model usually works with two 
methods: First, one can adapt the OS+GS combination. Sec-
ond, one can change the initial fitness of genes. Since the 
former represents a question of current research, we will 
focus on the initial fitness in the following.
By adapting the initial fitness of genes you can essentially 
tell the evolutionary simulation your preferences. Imagine 
you look mainly at the price when it comes to flights (see 

6.6  

Types of Genes and the Distillate

In the practical application of Genetic AI one often finds two 
types of data features: (i) “hard” features like the price of a 
product where the values do not change that dramatically 
(ii) “soft” features such as the correlation between user ac-
tions of different products that change all the time as the 
system progresses. Correspondingly, hard data features are 
described by hard genes and soft features as soft genes.
Both types of genes usually require a different handling, 
fitness function and, most importantly, strategies. Most of 
the time, hard genes are much easier to handle and can be 
grouped easily. Soft genes on the other hand require special 
treatment and preparation.
The main problem with soft genes is that they usually store 
a lot of information. Hence, one requires a special method 
to update and control soft genes and quickly compute strat-
egies and fitness values: distillation.
Imagine you have thousands of user interactions per hour 
you want to use as a soft gene in Genetic AI. Then you need 
an intermediate quantity between your application and your 
Genetic AI model:

Data Distillation in Genetic AI

Fig. 4: The process of data distillation in Genetic AI. An application continuously 
feeds data into the distillate during which it is anonymized. An organ covering the 
user data’s genes “consumes” the distillate when it calculates the corresponding 
fitness values (this can also happen at a later time as distillation occurs). All steps 
happen dynamically and in real-time.

While user data bases might contain above 100 GB of 
data, distilled data is usually smaller by at least a factor 
100. Still, the distillate contains the collective information 
about the soft gene and allows for a fast evolutionary  
simulation. By distilling the user data you also obtain a 
useful side effect: the data get fully anonymized and  
cannot be tracked back to the user. 

user data

Application Distillate*

*circle size greatly exaggerated

Genetic AI

anonymization organ

distillation

Get the right flight, revisited). Then, you will give the gene 
describing the price an initial push. Consequently, you can 
create a personalized “profile” of gene fitness values for 
each application/user.
Setting up the right initial values for gene fitness can seem 
difficult at first. You can however use a reinforcement learn-
ing approach to improve these values over time. 
It is interesting to interpret the change of the OS+GS com-
bination as a preparation of the “right” habitat for the evo-
lutionary simulation. At the same time, changing the initial 
fitness of genes corresponds to defining the “right” starting 
conditions for the simulation. Both means together provide 
a very versatile way to customize Genetic AI.

6.5  

Customizing your Genetic AI – Personalization
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In real world applications, one can often group genes to-
gether according to what they describe. Evaluating these 
gene groups and the corresponding sub-organisms inde-
pendently from the full system, allows us to choose the 
OS+GS very specifically. In Genetic AI we call these grouped 
sub-simulation organs:

Organs (Genetic AI)

Multi-Organ System (Genetic AI)

Fig. 5: An example of a Genetic AI organ. The organ computes the fitness for the 
alpha-part of the organisms.

Fig.6: An example of a multi-organ system containing 2 preliminary organs alpha 
and beta. Note that the partial gene fitness values are channeled into a final organ 
gamma computing the overall fitness for the organisms A-C.

Organs produce a set of fitness values for the genes and 
organisms they contain. Multiple organs can be combined 
in an hierarchical way to “work” together to solve the full 
problem. Usually you channel the information of all organs 
into one final simulation containing the all preliminary fitness 
values as individual genes:

Another aspect of multi-organ systems is their capability for 
parallel processing. Since many organs can do their part in 
the analysis independently from each other, one can save a 
lot of computational time if one lets them run in a parallel 
way.

Similar to the conceptual setup, Genetic AI also 
takes many inspirations from GAs and evolutionary 
game theory when it comes to the mathematical 
framework. Note that this section is not obligatory 
to follow the other parts of this paper.

In the previous sections, we outlined the basic principles in 
Genetic AI: genes interact with each other and with organ-
isms (a set of gene variants). In mathematical terms, we now 
have to define the describing quantities that evolve during 
the evolutionary simulation. In most cases, one follows the 
progress of organism and gene fitness through the genera-
tions (iterations). What genes/organisms become fitter, 
which see a decline? We call the equations by which the 
system evolves, replicator equations, since one can interpret 
the iterations in the simulation as individual gene abundance 
becoming higher or lower.

7   
Mathematical Formulation of Genetic AI

13 �Note that we distinguish between fitness of the entire gene and the fitness of the 
gene variant inside of the same gene. One can see the fitness variant function 
as a way to measure how strongly a particular gene is active in an organism, 
whereas the fitness function measures how strongly a gene is active in the whole 
evolutionary system. In the most simplest case, with binary data 0 or 1, the fitness 
variant function is f(0)=0 and f(1)=1, i.e. the identity.

14 �Note that we assume a scalar gene fitness here for simplicity. In general, the gene 
fitness is described by a function similar as for organisms.

15 �Note that in most cases also the organism fitness is a percentage value, but there 
is no need to restrict ourselves here.

Let us denote the raw data matrix as X containing n rows 
(organisms) and m columns (genes). Then, we have as genes 
and organisms, respectively
    

where 
denotes the fitness variant function of that gene 13. Our goal 
is to compute the fitness of genes and organisms, respec-
tively 14

   
where (k) denotes the iteration of the evolutionary simula-
tion 15. Note that denotes the initial values for the gene fitness 
that have to be provided with the start of the simulation.

6.7  

Interconnected Evolutionary Simulations – Organs

organ alpha

organ beta

organism (A,alpha)

organism (B,alpha)

organism (C,alpha)

organ alpha fitness (A, alpha)

fitness (B, alpha)

fitness (C, alpha)

organism A

organism B

organism C

(A-C, alpha)

(A-C, beta) fitness 
(A-C, beta)

fitness 
A-C

fitness 
(A-C, alpha)

organ 
gamma



Replicator equations  
for Genetic AI
Analogously to evolutionary game theory, replicator 
equations describe how to obtain the gene fitness of 
the iteration (k) from other quantities. Of course, our 
replicator equations depend on the chosen strategies 
OS+GS. Let us start by defining the local effective 
change to the gene fitness stemming from gene and 
organism strategy, respectively

Equations for GS Dominance  
and OS Balance
To understand the interplay between genes and or-
ganisms, let us take a closer look at our two example 
strategies. To that end, we also need a simpler ap-
proach to organism fitness

Please see Equations for GS Dominance and OS Bal-
ance for an example of these functions. Note that these 
Deltas can be readily interpreted as what distinct 
change a specific gene or organism triggers for a spe-
cific gene variant. This feature of Genetic AI is crucial 
for transparency, since one can always track down the 
source of any behavior of the evolutionary simulation. 
Obtaining the gene fitness for gene j in iteration (k) 
then boils down to accumulating all contributions

and normalizing the their effect

In a nutshell, replicator equations describe how genes 
and organisms evolve during the simulation. Addition-
ally, they take care that the total fitness “available” to 
the genes stays the same. Since no new fitness is cre-
ated, the genes have to “battle” for their share in every 
game round.

for iteration (k), namely a linear approach

Note that the linear organism fitness is built up from 
linear combination of gene variant fitness and gene 
fitness. This follows the interpretation of organisms as 
competing sets of gene variants [9].

We now define GS Dominance with the following 
equation

Note that for all gene variant fitnesses bigger than 50% 
the strategy will increase the gene fitness, in other 
cases it will lower the gene fitness. Hence, genes with 
more gene variant fitness will dominate others who 
have less. 
As a counterpart let us define OS Balance as

Note that the sign is exactly the other way around as 
in GS Dominance. The equation compares the local 
contribution of the gene (variant) to the full organism 
fitness. If a gene is too dominant in an organism, it will 
be reduced consequently.

Genetic AI   
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After you have run the evolutionary simulation, you 
obtain your final values of fitness of organisms and 
genes. So depending on whether you wanted to 
sort data sets or data features you can consequently 
sort the corresponding fitness values.

But what is the right sorting order to begin with? In multi-di-
mensional systems and in a non-model setup that is usually 
very difficult to say. Hence, since you cannot predefine the 
correct order for all simulations, one often resorts to defin-
ing the erroneous orders. That means, depending on what 
you want to achieve you say “this data set has to be in the 
top 10” or “this data set has not to be in the top 10” and by 
this accumulate a set of quality rules to benchmark your solu-
tions. Note that these rules can also be defined in an auto-
mated way to save time in the setup of a data model for 
quality.

How does Genetic AI learn and get better? The 
principle idea is that you learn to prepare the setup 
and the environment of the evolutionary simula-
tion. There are in principle three ways to do that 
(compare also 6.5 Customizing your Genetic AI - 
Personalization):

Changing the initial values for gene fitness: one can make 
the starting fitness very unfair and give certain genes and 
organisms an advantage/disadvantage in the evolutionary 
simulation. The choice of initial gene fitness can be done per 
user and application – this is a very easy way that Genetic AI 
learns to better match a user‘s demand.

Changing the gene and organism strategies: Genetic AI 
may learn to match the used strategies to the required be-
havior. Again this can be done on a per-simulation basis – the 
effect of this can however be quite severe.

8   
Evaluating the Quality of Results

9   
AI Learning

16 �Note that this is a nice analogy to the biological situations that two distinct habitats 
with the same species can show completely different evolutionary behavior.

17 �In (evolutionary) game theory the “result” of the game, i.e. the distribution of 
strategies, is the “right” answer per definition. This is the case since one has created 
the game to learn something about (evolutionary) systems by means of game 
theory. There is no one to stop you when you compare the distributions to real-
world evolutionary systems (e.g. the behavior of males/females in a population). 
This is however done on a per-system basis - and not automated for abstract data 
as we need it.

One might notice that this process of accumulating quality 
rules is in itself fundamentally different from ML approaches 
of measuring the quality by use of training and test data (see 
also Differences of Genetic AI to Machine Learning). The rea-
son is that Generic AI is not “trained” beforehand to repro-
duce certain categories of data or probabilities in one central 
model. “Training” the AI means running the evolutionary 
simulation and this is usually done in real-time for a specific 
user or application. Two or more simulations are not con-
nected to each other in the general case 16(though Generic 
AI can learn, see below). Consequently, splitting data into 
train and test makes no real sense for Generic AI.
From a bird-like perspective it is not surprising that we have 
to reconsider the way we measure AI quality, since the ap-
proach of Genetic AI is so much different from existing AI 17. 
Researching different ways to benchmark results is hence a way 
to expand the flexibility and range of this new technology.

Improving the distillate: for soft genes, where the system 
information is stored mainly in the distillate, one can learn 
expanding the distillate with new data sets and correlations.

The actual process of learning can be done manually, 
semi-automated or fully automated. Manually meaning that 
you observe quality benchmarks and adapt parameters and 
strategies. Semi-automated learning may consist of daily 
reports with options to improve the quality of your simula-
tions. Fully automated may include 2 different sets of initial 
values and distillates that “compete” each day in terms of a 
chosen KPI.



We have learned that Genetic AI provides a versa-
tile way to sort general data. But is it fast? In nu-
merics one measures the complexity of a problem 
also in terms of how many computations are need-
ed to obtain a result. 

In Genetic AI, in order to compute the Deltas

you roughly have to do 1-5 computations per data element 
(gene variant) for each Delta, depending on the chosen 
strategies. If you have n data sets and m data features this 
means you have approximately 8*n*m number of computa-
tions per iteration.

10   
Complexity & Performance

An organ usually has up to 20 data features at the maximum. 
The number of data sets n, however, can become very large. 
In this case, we usually prefilter data sets according to im-
portant features to reduce this number below 1000. Thus, 
we get to around 160.000 calculations per iteration which 
results in a computation time of milliseconds.
An important aspect of Genetic AI is that very often 1-2 it-
erations are enough. On the one hand that is because we 
are sorting - it is enough to know whether organism A comes 
before or after B (see also Getting the right flight, revisited). 
On the other hand that is because the general trend in gene 
fitness can be extrapolated and one obtains reasonable es-
timates for many applications.
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Data 

ML usually analyzes large data sets for patterns and 
correlations. Genetic AI is agnostic when it comes to 
data: you can input three data sets, but you could also 
input one million. Additionally, there is no central data 
model in Genetic AI, but every simulation is a new, 
independent game.

Structure
 
In ML one usually has a sophisticated training phase at 
the beginning, where a large amount of computational 
resources are invested to understand the data. After-
wards, the application of the trained AI model on new 
data is often much more lightweight than the training. 
Contrary, in Genetic AI, there is no preliminary training 
phase. Everything training and applying the AI model 
happens at the same time.

Training

in ML one has to take care to correctly select the right 
training data to cover the demand of the AI problem. 
Problems like overfitting and bias are difficult to con-
trol since the “effect” of a single data set in training 
cannot be backtraced. In Genetic AI there is naturally 
no overfitting since the to-be-sorted solutions are the 
only possible “source” of results. Preventing bias is 
connected to the evolutionary strategies used. In gen-
eral, it is very difficult to create a biased strategy that 
is stable for all kinds of data. Thus, bias would only 
come into play when one would try to “force” it into 
Genetic AI. Ironically, that is exactly the opposite situ-
ation as in ML where one tries to “force” the bias out 
of the AI model.

Goals 

in ML one tries to find patterns and categories in data. In a 
sense, the aim is to spice the data with a “meta-structure” 
that can then be used to solve all kinds of problems. In Ge-
netic AI, one tries to understand the “nature” of data, mean-
ing to find the underlying behavior and correlations. By 
differentiating relevant data features from less relevant traits 
one obtains a deeper understanding of the data space in 
question.

Differences of Genetic AI to  
Machine Learning

Apart from differences there of course 
lies a lot of potential in letting ML and 
Genetic AI work together. One example 
of how to do that is to let Generative AI 
generate solutions to a problem and  
afterwards allow Genetic AI to sort out 
the right one. In this sense an LLM could 
be a dedicated organ in a multi-organ 
setup of Genetic AI. (see also 11.6 Full Multi-Organ 

Interconnected System)
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As a new technology, it makes sense to compare Genetic AI to the most successful approach currently 
available: Machine Learning. Note that this is not straightforward, since the two technologies do not even 
use the same language when it comes to training or learning. Hence, let us compare the technologies 
in four domains: data, structure, training and goals:
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In this paper, we have seen that Genetic AI provides a very versatile way to solve MDS problems in a 
universal data regime. But, in practice: where can it be applied? In this section we give a few examples 
how Genetic AI can be used with minimal adaptations. Note that this list is by no means exhaustive in 
any sense.

11   
Practical Applications of Genetic AI

11.1  

As Recommendation Engine

Imagine you have a pool of products (or services) you want 
to show users. Which product(s) do you present to which 
user? Genetic AI offers a straightforward way to sort the 
offers according to the users preferences.
In these kinds of applications, one predominantly uses the 
initial values to personalize the final sorting results. This has 
the advantage of being very flexible, stable and fast. Note 
that you usually need some kind of prefiltering to prepare 
an evolutionary system of feasible size.

The use of Genetic AI as a recommendation engine has 
several advantages:

• �You can directly take the available pool of products that 
are currently available and sort it individually for the user. 
By doing this you circumvent the need of product catego-
ries and complex AI models to predict the interests of the 
user. 

11.2  

As Decision Engine

Think of a personal situation where you had multiple choices 
and a lot of decision parameters. A common approach is to 
make a pros and cons list and then weigh the arguments 
thinking about the consequences. With Genetic AI, you can 
do this in a much more structured and automated way for 
universal decisions.
The magic behind Genetic AI as a decision engine: the only 
thing that is needed is a principle understanding in the na-
ture of the decision. With this, the optimal choice of evolu-
tionary strategies is usually straightforward.

• �As a welcome side-effect you rule out any bias or overfit-
ting. These drawbacks find their way into ML systems, since 
they compute the AI model from a “separate” set of train-
ing data beforehand. In the end, they have to take care that 
the training “world” and the real “world” do match to a 
high degree to each other. In Genetic AI you do not have 
a preliminary training phase – hence, you will not meet 
these problems at all.

• �Since the individual evolutionary simulations are mutually 
independent, you do not need any personal user data ex-
cept for the user history. 

• �The choice of the right evolutionary strategies can usually 
be easily derived from the field of products or items to-
be-sorted.

11.3  

As Search Engine

Search engines paved the way for the growth of the internet 
in the first place. Lately, they have begun to struggle with 
the amount of data and with issues of personalization.
Since finding the right search results is nothing else but 
sorting data sets, Genetic AI shows great potential as a 
search engine. One big advantage is that you can easily 
personalize the results in a decentralized manner - directly 
at the device of the searching user.
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11.5  

As Prediction Engine

One application of Genetic AI that is not in the principle fo-
cus of this paper, is the prediction of things. However, it is 
only a small step from understanding the nature of a data 
system and predicting how it will evolve. Note that AI mod-
els for predicting need special care in terms of data features 
and quality. Additionally, choosing the right GS and OS 
strategies might not always be as straightforward as for 
other applications.

11.6  

Full Multi-Organ  
Interconnected System
Towards the end of our introduction to Genetic AI, let us 
accumulate all functionalities and take them all the way to 
the end, outlining a complex multi-organ system. For multi-
ple organs to work together they first need very specialized 
roles and strategies. Second, they have to be interconnected 
in a way such that they act like an intelligent “orchestra” of 
evolutionary simulations.
As a first step to plan the system, one has to group the genes 
in a meaningful way: hard genes that describe similar traits 
are accumulated into one organ. Analogously it works for 
soft genes 18. In our system to choose the right flight, the 
given grouping of the hard genes price, time and stops rep-
resents a straightforward example for a simple organ “Hard 
flight data”. Another organ could be “Airline Satisfaction” 
covering the user data of airline information as a soft gene 
(which user liked/dislike travelling with which airlines).
Both organs provide a list of organism fitness – one for “Hard 
flight data” and one for “Airline Satisfaction”. Both lists are 
sent to a third organ “Complete Analysis” as genes. After 
the evolutionary simulation in the organ “Complete Analy-
sis”, one obtains a final list of organism (=flight) fitness in-
telligently combining “hard” flight data with “soft” airline 
satisfaction. Note that all organs will in general use com-
pletely different evolutionary strategies. They do not “know” 
anything about the later use of their fitness output and will 
just “try” to solve the local data problem in the optimal way.

There are essentially no boundaries on the number of organs 
that can be used in Genetic AI. Comparing the concept of 
“organs” to “layers” in Neural Networks, one can observe 
that organs allow for a more direct and transparent control 
in between input and output data. On the other hand, Ge-
netic AI multi-organ systems are currently built for a specific 
application and cannot be applied freely to such a wide 
range of problems as for neural networks. However, the 
evolution of Genetic AI is just at the beginning.

18 �The reason why hard and soft genes are grouped in different organs would go 
beyond the scope of this paper. In a nutshell, hard genes are much less dynamic 
and can be safely described with relatively simple evolutionary strategies. For two 
soft genes it is difficult to describe them with one strategy so they often end up 
alone or with a single, similar soft gene partner.

11.4  

As Discovery Engine

A discovery engine is like a mixture of recommendation and 
search engine. It shall show you what you are looking for - 
and much more than that. Discovering new things and de-
cisions allows users to learn to treasure the available pool of 
items. Genetic AI allows to create this experience without 
any bias and hidden agendas.
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We started our analysis by listing a set of must-have requirements for the AI of our dreams. We are now 
ready to revisit our rules and reflect on if and how Genetic AI fulfills them:

12   
Our AI Requirements revisited

❶
Stability 
Since Genetic AI “identifies” the nature of data, it is very 
stable for most applications. Results and consequently an-
swers to problems hold firm even if single data sets are taken 
out or changed. The two main reasons for this: (i) sorting 
algorithms have a higher grade of stability than other tech-
nologies per definition and (ii) the evolutionary behavior of 
many strategies is relatively universal.

❷
Decentral Data and Model 
There is no central model for Genetic AI, since all the to-be-
sorted data sets are just taken as-is into the simulation. For 
soft genes an anonymized distillate is taken e.g. containing 
the user experiences of the system. In principle, this distillate 
can be distributed among peers, can be updated decentrally 
and does not have to be the same for all users in the system.

❸
Follow-the-rules 
Since Genetic AI does not generate things, one can simply 
restrict to data items that follow the rules. Additionally, one 
can use organs that push items with high ethical standards 
for example.

❹
Transparent 
In Genetic AI, all intermediate steps of the analysis can be 
investigated and clearly understood. Without any “hidden” 
layers or “black-box” components, transparency boils down 
to how to show the reached data understanding to the user 
in terms of UX strategies.

❺
Non-conformist 
To create a “conformist/uniform” Genetic AI has never been 
tried, but we assume that this is not ruled-out by the technol-
ogy itself . Our approach to create very diverse results is to 
take evolutionary strategies that favor non-average behavior. 
However, to use Genetic AI in the right, diverse way in the end 
depends on the individual or group applying it to a problem.

❻
Low Resources 
As we have seen in the section 10. Complexity & Perfor-
mance, Genetic AI uses very limited resources. In terms of 
user benefit per invested resource, Genetic AI is clearly superior 
to many established technologies.

1 4

2 5

3 6



Genetic AI   
Whitepaper21

As long as there is life on this planet, there is evo-
lution 19. Apart from physical and chemical bound-
aries, evolutionary processes have primarily shaped 
the habitats and societies around the globe. For us 
it thus seems natural to apply evolutionary con-
cepts to universal data analysis and artificial intel-
ligence – what can possibly go wrong?

The “evolution” of Genetic AI itself began in 2018, when the 
first ideas started to crystallize. Still, only a very limited 
number of people have shaped the technology so far. It is 
our vision that this paper helps to spread the “seed” of Genetic 
AI. We imagine new evolutionary strategies and new multi-or-
gan approaches to be created by other teams – and to 

13   
Outlook
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benchmark and compare them for an increased quality of 
simulation. In technical means, Genetic AI is nothing more 
than a toddler making its first steps.
We hope that this paper also leads to different perspectives 
on AI in general. What kind of AI do we want? Will it lead us 
to a better future as individuals and societies? In the end, 
Genetic AI is yet another technology – it is neither good nor 
evil. It is the people that are behind the machine that make 
the difference.
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becomes clear if one adds up the individual contributions of 
the gene variants (for the first iteration of the all-33% initial 
gene fitness example)

with all Deltas being recessive, but the first gene “price” still 
with the weakest effect. This is because all mean values of 
the genes [0.47, 0.37, 0.17] are below 50%.
Let us investigate the effect of OS Balance on the gene fit-
ness. Accumulating the Deltas analogously to above we find

with the first gene being too dominant, the second gene 
balanced and the third gene being too recessive, respec-
tively, from the organism perspective. The recessiveness of 
the third gene can be understood since it contributes nothing 
to the fitness of flights A and B.
Taking both contributions together one can conclude that for 
the third gene both strategies “pull” in opposite directions 
while the second gene gets diminished by both contributions, 
genes and organisms, respectively. The biggest effect how-
ever is created by OS Balance for the third gene “stops”.

15   
Appendix

 20 �One possible adaption would be to not use a linearly decreasing fitness with 
larger price, since customers usually interpret a price twice as high as much worse 
than twice as bad.

Getting the right flight, mathematically revisited

Getting the right flight, data interpretation

Let us investigate why certain data features (genes) are up- 
or down-voted by the combination of GS Dominance + OS 
Balance. With the raw data in mind

Raw  
Data

Price
(Euro)

Time-of-
transfer (h) 

Stops

Flight A 300 10 2

Flight B 600 5 2

Flight C 1500 4 1

let us apply our local fitness functions to the gene variants

Fitness 
Data

Price
(Euro)

Time-of-
transfer (h) 

Stops

Flight A 0.8 0 0

Flight B 0.6 0.5 0

Flight C 0 0.6 0.5

Note that we used a simple inverse fitness function to all 
genes which scales the entire data interval to [0, min(data 
feature)]. Using another local fitness function would lead to 
different results 20.
The important thing about GS Dominance is that it “meas-
ures” the asymmetry of a gene with respect to 50%. This 

Why does the data feature “stops” come out as the most im-
portant in our flight example? In terms of local fitness function 
we have seen that flights A and B (i.e. the majority of flights) 
have a value 0% on that gene. At the same time, flight C is the 
only data set to have the value 50% for the gene “stops”.
In terms of uniqueness of a data feature the “stops”-feature 
is thus the most relevant, since only one data set has a non-
zero value. In the setup, Genetic AI hence surmises that the 
data feature “stops” should be especially “treasured”. We can 
test this argumentation by changing the raw data for flight B:

Fitness 
Data

Price
(Euro)

Time-of-
transfer (h) 

Stops

Flight A 0.8 0 0

Flight B 0.6 0.5 0.5

Flight C 00 0.6 0.5

Note that now also flight B has just one stop. Running one 
iteration of Genetic AI one obtains

meaning that the gene “stops” behaves like the gene “time” 
now since we have removed the uniqueness.
 


